Add Volcengine VikingDB as new vector provider (#9287)

This commit is contained in:
ice yao
2024-10-13 21:26:05 +08:00
committed by GitHub
parent 1ec83e4969
commit d15ba3939d
15 changed files with 627 additions and 3 deletions

View File

@@ -0,0 +1,239 @@
import json
from typing import Any
from pydantic import BaseModel
from volcengine.viking_db import (
Data,
DistanceType,
Field,
FieldType,
IndexType,
QuantType,
VectorIndexParams,
VikingDBService,
)
from configs import dify_config
from core.rag.datasource.entity.embedding import Embeddings
from core.rag.datasource.vdb.field import Field as vdb_Field
from core.rag.datasource.vdb.vector_base import BaseVector
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
from core.rag.datasource.vdb.vector_type import VectorType
from core.rag.models.document import Document
from extensions.ext_redis import redis_client
from models.dataset import Dataset
class VikingDBConfig(BaseModel):
access_key: str
secret_key: str
host: str
region: str
scheme: str
connection_timeout: int
socket_timeout: int
index_type: str = IndexType.HNSW
distance: str = DistanceType.L2
quant: str = QuantType.Float
class VikingDBVector(BaseVector):
def __init__(self, collection_name: str, group_id: str, config: VikingDBConfig):
super().__init__(collection_name)
self._group_id = group_id
self._client_config = config
self._index_name = f"{self._collection_name}_idx"
self._client = VikingDBService(
host=config.host,
region=config.region,
scheme=config.scheme,
connection_timeout=config.connection_timeout,
socket_timeout=config.socket_timeout,
ak=config.access_key,
sk=config.secret_key,
)
def _has_collection(self) -> bool:
try:
self._client.get_collection(self._collection_name)
except Exception:
return False
return True
def _has_index(self) -> bool:
try:
self._client.get_index(self._collection_name, self._index_name)
except Exception:
return False
return True
def _create_collection(self, dimension: int):
lock_name = f"vector_indexing_lock_{self._collection_name}"
with redis_client.lock(lock_name, timeout=20):
collection_exist_cache_key = f"vector_indexing_{self._collection_name}"
if redis_client.get(collection_exist_cache_key):
return
if not self._has_collection():
fields = [
Field(field_name=vdb_Field.PRIMARY_KEY.value, field_type=FieldType.String, is_primary_key=True),
Field(field_name=vdb_Field.METADATA_KEY.value, field_type=FieldType.String),
Field(field_name=vdb_Field.GROUP_KEY.value, field_type=FieldType.String),
Field(field_name=vdb_Field.CONTENT_KEY.value, field_type=FieldType.Text),
Field(field_name=vdb_Field.VECTOR.value, field_type=FieldType.Vector, dim=dimension),
]
self._client.create_collection(
collection_name=self._collection_name,
fields=fields,
description="Collection For Dify",
)
if not self._has_index():
vector_index = VectorIndexParams(
distance=self._client_config.distance,
index_type=self._client_config.index_type,
quant=self._client_config.quant,
)
self._client.create_index(
collection_name=self._collection_name,
index_name=self._index_name,
vector_index=vector_index,
partition_by=vdb_Field.GROUP_KEY.value,
description="Index For Dify",
)
redis_client.set(collection_exist_cache_key, 1, ex=3600)
def get_type(self) -> str:
return VectorType.VIKINGDB
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
dimension = len(embeddings[0])
self._create_collection(dimension)
self.add_texts(texts, embeddings, **kwargs)
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
page_contents = [doc.page_content for doc in documents]
metadatas = [doc.metadata for doc in documents]
docs = []
for i, page_content in enumerate(page_contents):
metadata = {}
if metadatas is not None:
for key, val in metadatas[i].items():
metadata[key] = val
doc = Data(
{
vdb_Field.PRIMARY_KEY.value: metadatas[i]["doc_id"],
vdb_Field.VECTOR.value: embeddings[i] if embeddings else None,
vdb_Field.CONTENT_KEY.value: page_content,
vdb_Field.METADATA_KEY.value: json.dumps(metadata),
vdb_Field.GROUP_KEY.value: self._group_id,
}
)
docs.append(doc)
self._client.get_collection(self._collection_name).upsert_data(docs)
def text_exists(self, id: str) -> bool:
docs = self._client.get_collection(self._collection_name).fetch_data(id)
not_exists_str = "data does not exist"
if docs is not None and not_exists_str not in docs.fields.get("message", ""):
return True
return False
def delete_by_ids(self, ids: list[str]) -> None:
self._client.get_collection(self._collection_name).delete_data(ids)
def get_ids_by_metadata_field(self, key: str, value: str):
# Note: Metadata field value is an dict, but vikingdb field
# not support json type
results = self._client.get_index(self._collection_name, self._index_name).search(
filter={"op": "must", "field": vdb_Field.GROUP_KEY.value, "conds": [self._group_id]},
# max value is 5000
limit=5000,
)
if not results:
return []
ids = []
for result in results:
metadata = result.fields.get(vdb_Field.METADATA_KEY.value)
if metadata is not None:
metadata = json.loads(metadata)
if metadata.get(key) == value:
ids.append(result.id)
return ids
def delete_by_metadata_field(self, key: str, value: str) -> None:
ids = self.get_ids_by_metadata_field(key, value)
self.delete_by_ids(ids)
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
results = self._client.get_index(self._collection_name, self._index_name).search_by_vector(
query_vector, limit=kwargs.get("top_k", 50)
)
score_threshold = float(kwargs.get("score_threshold") or 0.0)
return self._get_search_res(results, score_threshold)
def _get_search_res(self, results, score_threshold):
if len(results) == 0:
return []
docs = []
for result in results:
metadata = result.fields.get(vdb_Field.METADATA_KEY.value)
if metadata is not None:
metadata = json.loads(metadata)
if result.score > score_threshold:
metadata["score"] = result.score
doc = Document(page_content=result.fields.get(vdb_Field.CONTENT_KEY.value), metadata=metadata)
docs.append(doc)
docs = sorted(docs, key=lambda x: x.metadata["score"], reverse=True)
return docs
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
return []
def delete(self) -> None:
if self._has_index():
self._client.drop_index(self._collection_name, self._index_name)
if self._has_collection():
self._client.drop_collection(self._collection_name)
class VikingDBVectorFactory(AbstractVectorFactory):
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> VikingDBVector:
if dataset.index_struct_dict:
class_prefix: str = dataset.index_struct_dict["vector_store"]["class_prefix"]
collection_name = class_prefix.lower()
else:
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id).lower()
dataset.index_struct = json.dumps(self.gen_index_struct_dict(VectorType.VIKINGDB, collection_name))
if dify_config.VIKINGDB_ACCESS_KEY is None:
raise ValueError("VIKINGDB_ACCESS_KEY should not be None")
if dify_config.VIKINGDB_SECRET_KEY is None:
raise ValueError("VIKINGDB_SECRET_KEY should not be None")
if dify_config.VIKINGDB_HOST is None:
raise ValueError("VIKINGDB_HOST should not be None")
if dify_config.VIKINGDB_REGION is None:
raise ValueError("VIKINGDB_REGION should not be None")
if dify_config.VIKINGDB_SCHEME is None:
raise ValueError("VIKINGDB_SCHEME should not be None")
return VikingDBVector(
collection_name=collection_name,
group_id=dataset.id,
config=VikingDBConfig(
access_key=dify_config.VIKINGDB_ACCESS_KEY,
secret_key=dify_config.VIKINGDB_SECRET_KEY,
host=dify_config.VIKINGDB_HOST,
region=dify_config.VIKINGDB_REGION,
scheme=dify_config.VIKINGDB_SCHEME,
connection_timeout=dify_config.VIKINGDB_CONNECTION_TIMEOUT,
socket_timeout=dify_config.VIKINGDB_SOCKET_TIMEOUT,
),
)