mirror of
http://112.124.100.131/huang.ze/ebiz-dify-ai.git
synced 2025-12-25 02:33:00 +08:00
Model Runtime (#1858)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com> Co-authored-by: Garfield Dai <dai.hai@foxmail.com> Co-authored-by: chenhe <guchenhe@gmail.com> Co-authored-by: jyong <jyong@dify.ai> Co-authored-by: Joel <iamjoel007@gmail.com> Co-authored-by: Yeuoly <admin@srmxy.cn>
This commit is contained in:
@@ -0,0 +1,304 @@
|
||||
import os
|
||||
from typing import Generator
|
||||
|
||||
import pytest
|
||||
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, \
|
||||
LLMResultChunkDelta
|
||||
from core.model_runtime.entities.message_entities import UserPromptMessage, AssistantPromptMessage
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.huggingface_hub.llm.llm import HuggingfaceHubLargeLanguageModel
|
||||
|
||||
from tests.integration_tests.model_runtime.__mock.huggingface import setup_huggingface_mock
|
||||
|
||||
@pytest.mark.parametrize('setup_huggingface_mock', [['none']], indirect=True)
|
||||
def test_hosted_inference_api_validate_credentials(setup_huggingface_mock):
|
||||
model = HuggingfaceHubLargeLanguageModel()
|
||||
|
||||
with pytest.raises(CredentialsValidateFailedError):
|
||||
model.validate_credentials(
|
||||
model='HuggingFaceH4/zephyr-7b-beta',
|
||||
credentials={
|
||||
'huggingfacehub_api_type': 'hosted_inference_api',
|
||||
'huggingfacehub_api_token': 'invalid_key'
|
||||
}
|
||||
)
|
||||
|
||||
with pytest.raises(CredentialsValidateFailedError):
|
||||
model.validate_credentials(
|
||||
model='fake-model',
|
||||
credentials={
|
||||
'huggingfacehub_api_type': 'hosted_inference_api',
|
||||
'huggingfacehub_api_token': 'invalid_key'
|
||||
}
|
||||
)
|
||||
|
||||
model.validate_credentials(
|
||||
model='HuggingFaceH4/zephyr-7b-beta',
|
||||
credentials={
|
||||
'huggingfacehub_api_type': 'hosted_inference_api',
|
||||
'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY')
|
||||
}
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize('setup_huggingface_mock', [['none']], indirect=True)
|
||||
def test_hosted_inference_api_invoke_model(setup_huggingface_mock):
|
||||
model = HuggingfaceHubLargeLanguageModel()
|
||||
|
||||
response = model.invoke(
|
||||
model='HuggingFaceH4/zephyr-7b-beta',
|
||||
credentials={
|
||||
'huggingfacehub_api_type': 'hosted_inference_api',
|
||||
'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY')
|
||||
},
|
||||
prompt_messages=[
|
||||
UserPromptMessage(
|
||||
content='Who are you?'
|
||||
)
|
||||
],
|
||||
model_parameters={
|
||||
'temperature': 1.0,
|
||||
'top_k': 2,
|
||||
'top_p': 0.5,
|
||||
},
|
||||
stop=['How'],
|
||||
stream=False,
|
||||
user="abc-123"
|
||||
)
|
||||
|
||||
assert isinstance(response, LLMResult)
|
||||
assert len(response.message.content) > 0
|
||||
|
||||
@pytest.mark.parametrize('setup_huggingface_mock', [['none']], indirect=True)
|
||||
def test_hosted_inference_api_invoke_stream_model(setup_huggingface_mock):
|
||||
model = HuggingfaceHubLargeLanguageModel()
|
||||
|
||||
response = model.invoke(
|
||||
model='HuggingFaceH4/zephyr-7b-beta',
|
||||
credentials={
|
||||
'huggingfacehub_api_type': 'hosted_inference_api',
|
||||
'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY')
|
||||
},
|
||||
prompt_messages=[
|
||||
UserPromptMessage(
|
||||
content='Who are you?'
|
||||
)
|
||||
],
|
||||
model_parameters={
|
||||
'temperature': 1.0,
|
||||
'top_k': 2,
|
||||
'top_p': 0.5,
|
||||
},
|
||||
stop=['How'],
|
||||
stream=True,
|
||||
user="abc-123"
|
||||
)
|
||||
|
||||
assert isinstance(response, Generator)
|
||||
|
||||
for chunk in response:
|
||||
assert isinstance(chunk, LLMResultChunk)
|
||||
assert isinstance(chunk.delta, LLMResultChunkDelta)
|
||||
assert isinstance(chunk.delta.message, AssistantPromptMessage)
|
||||
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
|
||||
|
||||
@pytest.mark.parametrize('setup_huggingface_mock', [['none']], indirect=True)
|
||||
def test_inference_endpoints_text_generation_validate_credentials(setup_huggingface_mock):
|
||||
model = HuggingfaceHubLargeLanguageModel()
|
||||
|
||||
with pytest.raises(CredentialsValidateFailedError):
|
||||
model.validate_credentials(
|
||||
model='openchat/openchat_3.5',
|
||||
credentials={
|
||||
'huggingfacehub_api_type': 'inference_endpoints',
|
||||
'huggingfacehub_api_token': 'invalid_key',
|
||||
'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_TEXT_GEN_ENDPOINT_URL'),
|
||||
'task_type': 'text-generation'
|
||||
}
|
||||
)
|
||||
|
||||
model.validate_credentials(
|
||||
model='openchat/openchat_3.5',
|
||||
credentials={
|
||||
'huggingfacehub_api_type': 'inference_endpoints',
|
||||
'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY'),
|
||||
'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_TEXT_GEN_ENDPOINT_URL'),
|
||||
'task_type': 'text-generation'
|
||||
}
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize('setup_huggingface_mock', [['none']], indirect=True)
|
||||
def test_inference_endpoints_text_generation_invoke_model(setup_huggingface_mock):
|
||||
model = HuggingfaceHubLargeLanguageModel()
|
||||
|
||||
response = model.invoke(
|
||||
model='openchat/openchat_3.5',
|
||||
credentials={
|
||||
'huggingfacehub_api_type': 'inference_endpoints',
|
||||
'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY'),
|
||||
'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_TEXT_GEN_ENDPOINT_URL'),
|
||||
'task_type': 'text-generation'
|
||||
},
|
||||
prompt_messages=[
|
||||
UserPromptMessage(
|
||||
content='Who are you?'
|
||||
)
|
||||
],
|
||||
model_parameters={
|
||||
'temperature': 1.0,
|
||||
'top_k': 2,
|
||||
'top_p': 0.5,
|
||||
},
|
||||
stop=['How'],
|
||||
stream=False,
|
||||
user="abc-123"
|
||||
)
|
||||
|
||||
assert isinstance(response, LLMResult)
|
||||
assert len(response.message.content) > 0
|
||||
|
||||
@pytest.mark.parametrize('setup_huggingface_mock', [['none']], indirect=True)
|
||||
def test_inference_endpoints_text_generation_invoke_stream_model(setup_huggingface_mock):
|
||||
model = HuggingfaceHubLargeLanguageModel()
|
||||
|
||||
response = model.invoke(
|
||||
model='openchat/openchat_3.5',
|
||||
credentials={
|
||||
'huggingfacehub_api_type': 'inference_endpoints',
|
||||
'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY'),
|
||||
'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_TEXT_GEN_ENDPOINT_URL'),
|
||||
'task_type': 'text-generation'
|
||||
},
|
||||
prompt_messages=[
|
||||
UserPromptMessage(
|
||||
content='Who are you?'
|
||||
)
|
||||
],
|
||||
model_parameters={
|
||||
'temperature': 1.0,
|
||||
'top_k': 2,
|
||||
'top_p': 0.5,
|
||||
},
|
||||
stop=['How'],
|
||||
stream=True,
|
||||
user="abc-123"
|
||||
)
|
||||
|
||||
assert isinstance(response, Generator)
|
||||
|
||||
for chunk in response:
|
||||
assert isinstance(chunk, LLMResultChunk)
|
||||
assert isinstance(chunk.delta, LLMResultChunkDelta)
|
||||
assert isinstance(chunk.delta.message, AssistantPromptMessage)
|
||||
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
|
||||
|
||||
@pytest.mark.parametrize('setup_huggingface_mock', [['none']], indirect=True)
|
||||
def test_inference_endpoints_text2text_generation_validate_credentials(setup_huggingface_mock):
|
||||
model = HuggingfaceHubLargeLanguageModel()
|
||||
|
||||
with pytest.raises(CredentialsValidateFailedError):
|
||||
model.validate_credentials(
|
||||
model='google/mt5-base',
|
||||
credentials={
|
||||
'huggingfacehub_api_type': 'inference_endpoints',
|
||||
'huggingfacehub_api_token': 'invalid_key',
|
||||
'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_TEXT2TEXT_GEN_ENDPOINT_URL'),
|
||||
'task_type': 'text2text-generation'
|
||||
}
|
||||
)
|
||||
|
||||
model.validate_credentials(
|
||||
model='google/mt5-base',
|
||||
credentials={
|
||||
'huggingfacehub_api_type': 'inference_endpoints',
|
||||
'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY'),
|
||||
'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_TEXT2TEXT_GEN_ENDPOINT_URL'),
|
||||
'task_type': 'text2text-generation'
|
||||
}
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize('setup_huggingface_mock', [['none']], indirect=True)
|
||||
def test_inference_endpoints_text2text_generation_invoke_model(setup_huggingface_mock):
|
||||
model = HuggingfaceHubLargeLanguageModel()
|
||||
|
||||
response = model.invoke(
|
||||
model='google/mt5-base',
|
||||
credentials={
|
||||
'huggingfacehub_api_type': 'inference_endpoints',
|
||||
'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY'),
|
||||
'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_TEXT2TEXT_GEN_ENDPOINT_URL'),
|
||||
'task_type': 'text2text-generation'
|
||||
},
|
||||
prompt_messages=[
|
||||
UserPromptMessage(
|
||||
content='Who are you?'
|
||||
)
|
||||
],
|
||||
model_parameters={
|
||||
'temperature': 1.0,
|
||||
'top_k': 2,
|
||||
'top_p': 0.5,
|
||||
},
|
||||
stop=['How'],
|
||||
stream=False,
|
||||
user="abc-123"
|
||||
)
|
||||
|
||||
assert isinstance(response, LLMResult)
|
||||
assert len(response.message.content) > 0
|
||||
|
||||
@pytest.mark.parametrize('setup_huggingface_mock', [['none']], indirect=True)
|
||||
def test_inference_endpoints_text2text_generation_invoke_stream_model(setup_huggingface_mock):
|
||||
model = HuggingfaceHubLargeLanguageModel()
|
||||
|
||||
response = model.invoke(
|
||||
model='google/mt5-base',
|
||||
credentials={
|
||||
'huggingfacehub_api_type': 'inference_endpoints',
|
||||
'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY'),
|
||||
'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_TEXT2TEXT_GEN_ENDPOINT_URL'),
|
||||
'task_type': 'text2text-generation'
|
||||
},
|
||||
prompt_messages=[
|
||||
UserPromptMessage(
|
||||
content='Who are you?'
|
||||
)
|
||||
],
|
||||
model_parameters={
|
||||
'temperature': 1.0,
|
||||
'top_k': 2,
|
||||
'top_p': 0.5,
|
||||
},
|
||||
stop=['How'],
|
||||
stream=True,
|
||||
user="abc-123"
|
||||
)
|
||||
|
||||
assert isinstance(response, Generator)
|
||||
|
||||
for chunk in response:
|
||||
assert isinstance(chunk, LLMResultChunk)
|
||||
assert isinstance(chunk.delta, LLMResultChunkDelta)
|
||||
assert isinstance(chunk.delta.message, AssistantPromptMessage)
|
||||
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
|
||||
|
||||
|
||||
def test_get_num_tokens():
|
||||
model = HuggingfaceHubLargeLanguageModel()
|
||||
|
||||
num_tokens = model.get_num_tokens(
|
||||
model='google/mt5-base',
|
||||
credentials={
|
||||
'huggingfacehub_api_type': 'inference_endpoints',
|
||||
'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY'),
|
||||
'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_TEXT2TEXT_GEN_ENDPOINT_URL'),
|
||||
'task_type': 'text2text-generation'
|
||||
},
|
||||
prompt_messages=[
|
||||
UserPromptMessage(
|
||||
content='Hello World!'
|
||||
)
|
||||
]
|
||||
)
|
||||
|
||||
assert num_tokens == 7
|
||||
@@ -0,0 +1,120 @@
|
||||
import os
|
||||
|
||||
import pytest
|
||||
|
||||
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.huggingface_hub.text_embedding.text_embedding import \
|
||||
HuggingfaceHubTextEmbeddingModel
|
||||
|
||||
|
||||
def test_hosted_inference_api_validate_credentials():
|
||||
model = HuggingfaceHubTextEmbeddingModel()
|
||||
|
||||
with pytest.raises(CredentialsValidateFailedError):
|
||||
model.validate_credentials(
|
||||
model='facebook/bart-base',
|
||||
credentials={
|
||||
'huggingfacehub_api_type': 'hosted_inference_api',
|
||||
'huggingfacehub_api_token': 'invalid_key',
|
||||
}
|
||||
)
|
||||
|
||||
model.validate_credentials(
|
||||
model='facebook/bart-base',
|
||||
credentials={
|
||||
'huggingfacehub_api_type': 'hosted_inference_api',
|
||||
'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY'),
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
def test_hosted_inference_api_invoke_model():
|
||||
model = HuggingfaceHubTextEmbeddingModel()
|
||||
|
||||
result = model.invoke(
|
||||
model='facebook/bart-base',
|
||||
credentials={
|
||||
'huggingfacehub_api_type': 'hosted_inference_api',
|
||||
'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY'),
|
||||
},
|
||||
texts=[
|
||||
"hello",
|
||||
"world"
|
||||
]
|
||||
)
|
||||
|
||||
assert isinstance(result, TextEmbeddingResult)
|
||||
assert len(result.embeddings) == 2
|
||||
assert result.usage.total_tokens == 2
|
||||
|
||||
|
||||
def test_inference_endpoints_validate_credentials():
|
||||
model = HuggingfaceHubTextEmbeddingModel()
|
||||
|
||||
with pytest.raises(CredentialsValidateFailedError):
|
||||
model.validate_credentials(
|
||||
model='all-MiniLM-L6-v2',
|
||||
credentials={
|
||||
'huggingfacehub_api_type': 'inference_endpoints',
|
||||
'huggingfacehub_api_token': 'invalid_key',
|
||||
'huggingface_namespace': 'Dify-AI',
|
||||
'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_EMBEDDINGS_ENDPOINT_URL'),
|
||||
'task_type': 'feature-extraction'
|
||||
}
|
||||
)
|
||||
|
||||
model.validate_credentials(
|
||||
model='all-MiniLM-L6-v2',
|
||||
credentials={
|
||||
'huggingfacehub_api_type': 'inference_endpoints',
|
||||
'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY'),
|
||||
'huggingface_namespace': 'Dify-AI',
|
||||
'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_EMBEDDINGS_ENDPOINT_URL'),
|
||||
'task_type': 'feature-extraction'
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
def test_inference_endpoints_invoke_model():
|
||||
model = HuggingfaceHubTextEmbeddingModel()
|
||||
|
||||
result = model.invoke(
|
||||
model='all-MiniLM-L6-v2',
|
||||
credentials={
|
||||
'huggingfacehub_api_type': 'inference_endpoints',
|
||||
'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY'),
|
||||
'huggingface_namespace': 'Dify-AI',
|
||||
'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_EMBEDDINGS_ENDPOINT_URL'),
|
||||
'task_type': 'feature-extraction'
|
||||
},
|
||||
texts=[
|
||||
"hello",
|
||||
"world"
|
||||
]
|
||||
)
|
||||
|
||||
assert isinstance(result, TextEmbeddingResult)
|
||||
assert len(result.embeddings) == 2
|
||||
assert result.usage.total_tokens == 0
|
||||
|
||||
|
||||
def test_get_num_tokens():
|
||||
model = HuggingfaceHubTextEmbeddingModel()
|
||||
|
||||
num_tokens = model.get_num_tokens(
|
||||
model='all-MiniLM-L6-v2',
|
||||
credentials={
|
||||
'huggingfacehub_api_type': 'inference_endpoints',
|
||||
'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY'),
|
||||
'huggingface_namespace': 'Dify-AI',
|
||||
'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_EMBEDDINGS_ENDPOINT_URL'),
|
||||
'task_type': 'feature-extraction'
|
||||
},
|
||||
texts=[
|
||||
"hello",
|
||||
"world"
|
||||
]
|
||||
)
|
||||
|
||||
assert num_tokens == 2
|
||||
Reference in New Issue
Block a user