Model Runtime (#1858)

Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
Co-authored-by: Garfield Dai <dai.hai@foxmail.com>
Co-authored-by: chenhe <guchenhe@gmail.com>
Co-authored-by: jyong <jyong@dify.ai>
Co-authored-by: Joel <iamjoel007@gmail.com>
Co-authored-by: Yeuoly <admin@srmxy.cn>
This commit is contained in:
takatost
2024-01-02 23:42:00 +08:00
committed by GitHub
parent e91dd28a76
commit d069c668f8
807 changed files with 171310 additions and 23806 deletions

View File

View File

@@ -0,0 +1,325 @@
import logging
from typing import cast, Optional, List
from langchain import WikipediaAPIWrapper
from langchain.callbacks.base import BaseCallbackHandler
from langchain.tools import BaseTool, WikipediaQueryRun, Tool
from pydantic import BaseModel, Field
from core.agent.agent.agent_llm_callback import AgentLLMCallback
from core.agent.agent_executor import PlanningStrategy, AgentConfiguration, AgentExecutor
from core.application_queue_manager import ApplicationQueueManager
from core.callback_handler.agent_loop_gather_callback_handler import AgentLoopGatherCallbackHandler
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
from core.entities.application_entities import ModelConfigEntity, InvokeFrom, \
AgentEntity, AgentToolEntity, AppOrchestrationConfigEntity
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
from core.model_runtime.model_providers import model_provider_factory
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.tool.current_datetime_tool import DatetimeTool
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
from core.tool.provider.serpapi_provider import SerpAPIToolProvider
from core.tool.serpapi_wrapper import OptimizedSerpAPIWrapper, OptimizedSerpAPIInput
from core.tool.web_reader_tool import WebReaderTool
from extensions.ext_database import db
from models.dataset import Dataset
from models.model import Message
logger = logging.getLogger(__name__)
class AgentRunnerFeature:
def __init__(self, tenant_id: str,
app_orchestration_config: AppOrchestrationConfigEntity,
model_config: ModelConfigEntity,
config: AgentEntity,
queue_manager: ApplicationQueueManager,
message: Message,
user_id: str,
agent_llm_callback: AgentLLMCallback,
callback: AgentLoopGatherCallbackHandler,
memory: Optional[TokenBufferMemory] = None,) -> None:
"""
Agent runner
:param tenant_id: tenant id
:param app_orchestration_config: app orchestration config
:param model_config: model config
:param config: dataset config
:param queue_manager: queue manager
:param message: message
:param user_id: user id
:param agent_llm_callback: agent llm callback
:param callback: callback
:param memory: memory
"""
self.tenant_id = tenant_id
self.app_orchestration_config = app_orchestration_config
self.model_config = model_config
self.config = config
self.queue_manager = queue_manager
self.message = message
self.user_id = user_id
self.agent_llm_callback = agent_llm_callback
self.callback = callback
self.memory = memory
def run(self, query: str,
invoke_from: InvokeFrom) -> Optional[str]:
"""
Retrieve agent loop result.
:param query: query
:param invoke_from: invoke from
:return:
"""
provider = self.config.provider
model = self.config.model
tool_configs = self.config.tools
# check model is support tool calling
provider_instance = model_provider_factory.get_provider_instance(provider=provider)
model_type_instance = provider_instance.get_model_instance(ModelType.LLM)
model_type_instance = cast(LargeLanguageModel, model_type_instance)
# get model schema
model_schema = model_type_instance.get_model_schema(
model=model,
credentials=self.model_config.credentials
)
if not model_schema:
return None
planning_strategy = PlanningStrategy.REACT
features = model_schema.features
if features:
if ModelFeature.TOOL_CALL in features \
or ModelFeature.MULTI_TOOL_CALL in features:
planning_strategy = PlanningStrategy.FUNCTION_CALL
tools = self.to_tools(
tool_configs=tool_configs,
invoke_from=invoke_from,
callbacks=[self.callback, DifyStdOutCallbackHandler()],
)
if len(tools) == 0:
return None
agent_configuration = AgentConfiguration(
strategy=planning_strategy,
model_config=self.model_config,
tools=tools,
memory=self.memory,
max_iterations=10,
max_execution_time=400.0,
early_stopping_method="generate",
agent_llm_callback=self.agent_llm_callback,
callbacks=[self.callback, DifyStdOutCallbackHandler()]
)
agent_executor = AgentExecutor(agent_configuration)
try:
# check if should use agent
should_use_agent = agent_executor.should_use_agent(query)
if not should_use_agent:
return None
result = agent_executor.run(query)
return result.output
except Exception as ex:
logger.exception("agent_executor run failed")
return None
def to_tools(self, tool_configs: list[AgentToolEntity],
invoke_from: InvokeFrom,
callbacks: list[BaseCallbackHandler]) \
-> Optional[List[BaseTool]]:
"""
Convert tool configs to tools
:param tool_configs: tool configs
:param invoke_from: invoke from
:param callbacks: callbacks
"""
tools = []
for tool_config in tool_configs:
tool = None
if tool_config.tool_id == "dataset":
tool = self.to_dataset_retriever_tool(
tool_config=tool_config.config,
invoke_from=invoke_from
)
elif tool_config.tool_id == "web_reader":
tool = self.to_web_reader_tool(
tool_config=tool_config.config,
invoke_from=invoke_from
)
elif tool_config.tool_id == "google_search":
tool = self.to_google_search_tool(
tool_config=tool_config.config,
invoke_from=invoke_from
)
elif tool_config.tool_id == "wikipedia":
tool = self.to_wikipedia_tool(
tool_config=tool_config.config,
invoke_from=invoke_from
)
elif tool_config.tool_id == "current_datetime":
tool = self.to_current_datetime_tool(
tool_config=tool_config.config,
invoke_from=invoke_from
)
if tool:
if tool.callbacks is not None:
tool.callbacks.extend(callbacks)
else:
tool.callbacks = callbacks
tools.append(tool)
return tools
def to_dataset_retriever_tool(self, tool_config: dict,
invoke_from: InvokeFrom) \
-> Optional[BaseTool]:
"""
A dataset tool is a tool that can be used to retrieve information from a dataset
:param tool_config: tool config
:param invoke_from: invoke from
"""
show_retrieve_source = self.app_orchestration_config.show_retrieve_source
hit_callback = DatasetIndexToolCallbackHandler(
queue_manager=self.queue_manager,
app_id=self.message.app_id,
message_id=self.message.id,
user_id=self.user_id,
invoke_from=invoke_from
)
# get dataset from dataset id
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == self.tenant_id,
Dataset.id == tool_config.get("id")
).first()
# pass if dataset is not available
if not dataset:
return None
# pass if dataset is not available
if (dataset and dataset.available_document_count == 0
and dataset.available_document_count == 0):
return None
# get retrieval model config
default_retrieval_model = {
'search_method': 'semantic_search',
'reranking_enable': False,
'reranking_model': {
'reranking_provider_name': '',
'reranking_model_name': ''
},
'top_k': 2,
'score_threshold_enabled': False
}
retrieval_model_config = dataset.retrieval_model \
if dataset.retrieval_model else default_retrieval_model
# get top k
top_k = retrieval_model_config['top_k']
# get score threshold
score_threshold = None
score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
if score_threshold_enabled:
score_threshold = retrieval_model_config.get("score_threshold")
tool = DatasetRetrieverTool.from_dataset(
dataset=dataset,
top_k=top_k,
score_threshold=score_threshold,
hit_callbacks=[hit_callback],
return_resource=show_retrieve_source,
retriever_from=invoke_from.to_source()
)
return tool
def to_web_reader_tool(self, tool_config: dict,
invoke_from: InvokeFrom) -> Optional[BaseTool]:
"""
A tool for reading web pages
:param tool_config: tool config
:param invoke_from: invoke from
:return:
"""
model_parameters = {
"temperature": 0,
"max_tokens": 500
}
tool = WebReaderTool(
model_config=self.model_config,
model_parameters=model_parameters,
max_chunk_length=4000,
continue_reading=True
)
return tool
def to_google_search_tool(self, tool_config: dict,
invoke_from: InvokeFrom) -> Optional[BaseTool]:
"""
A tool for performing a Google search and extracting snippets and webpages
:param tool_config: tool config
:param invoke_from: invoke from
:return:
"""
tool_provider = SerpAPIToolProvider(tenant_id=self.tenant_id)
func_kwargs = tool_provider.credentials_to_func_kwargs()
if not func_kwargs:
return None
tool = Tool(
name="google_search",
description="A tool for performing a Google search and extracting snippets and webpages "
"when you need to search for something you don't know or when your information "
"is not up to date. "
"Input should be a search query.",
func=OptimizedSerpAPIWrapper(**func_kwargs).run,
args_schema=OptimizedSerpAPIInput
)
return tool
def to_current_datetime_tool(self, tool_config: dict,
invoke_from: InvokeFrom) -> Optional[BaseTool]:
"""
A tool for getting the current date and time
:param tool_config: tool config
:param invoke_from: invoke from
:return:
"""
return DatetimeTool()
def to_wikipedia_tool(self, tool_config: dict,
invoke_from: InvokeFrom) -> Optional[BaseTool]:
"""
A tool for searching Wikipedia
:param tool_config: tool config
:param invoke_from: invoke from
:return:
"""
class WikipediaInput(BaseModel):
query: str = Field(..., description="search query.")
return WikipediaQueryRun(
name="wikipedia",
api_wrapper=WikipediaAPIWrapper(doc_content_chars_max=4000),
args_schema=WikipediaInput
)

View File

@@ -0,0 +1,119 @@
import logging
from typing import Optional
from flask import current_app
from core.embedding.cached_embedding import CacheEmbedding
from core.entities.application_entities import InvokeFrom
from core.index.vector_index.vector_index import VectorIndex
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from extensions.ext_database import db
from models.dataset import Dataset
from models.model import App, Message, AppAnnotationSetting, MessageAnnotation
from services.annotation_service import AppAnnotationService
from services.dataset_service import DatasetCollectionBindingService
logger = logging.getLogger(__name__)
class AnnotationReplyFeature:
def query(self, app_record: App,
message: Message,
query: str,
user_id: str,
invoke_from: InvokeFrom) -> Optional[MessageAnnotation]:
"""
Query app annotations to reply
:param app_record: app record
:param message: message
:param query: query
:param user_id: user id
:param invoke_from: invoke from
:return:
"""
annotation_setting = db.session.query(AppAnnotationSetting).filter(
AppAnnotationSetting.app_id == app_record.id).first()
if not annotation_setting:
return None
collection_binding_detail = annotation_setting.collection_binding_detail
try:
score_threshold = annotation_setting.score_threshold or 1
embedding_provider_name = collection_binding_detail.provider_name
embedding_model_name = collection_binding_detail.model_name
model_manager = ModelManager()
model_instance = model_manager.get_model_instance(
tenant_id=app_record.tenant_id,
provider=embedding_provider_name,
model_type=ModelType.TEXT_EMBEDDING,
model=embedding_model_name
)
# get embedding model
embeddings = CacheEmbedding(model_instance)
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
embedding_provider_name,
embedding_model_name,
'annotation'
)
dataset = Dataset(
id=app_record.id,
tenant_id=app_record.tenant_id,
indexing_technique='high_quality',
embedding_model_provider=embedding_provider_name,
embedding_model=embedding_model_name,
collection_binding_id=dataset_collection_binding.id
)
vector_index = VectorIndex(
dataset=dataset,
config=current_app.config,
embeddings=embeddings,
attributes=['doc_id', 'annotation_id', 'app_id']
)
documents = vector_index.search(
query=query,
search_type='similarity_score_threshold',
search_kwargs={
'k': 1,
'score_threshold': score_threshold,
'filter': {
'group_id': [dataset.id]
}
}
)
if documents:
annotation_id = documents[0].metadata['annotation_id']
score = documents[0].metadata['score']
annotation = AppAnnotationService.get_annotation_by_id(annotation_id)
if annotation:
if invoke_from in [InvokeFrom.SERVICE_API, InvokeFrom.WEB_APP]:
from_source = 'api'
else:
from_source = 'console'
# insert annotation history
AppAnnotationService.add_annotation_history(annotation.id,
app_record.id,
annotation.question,
annotation.content,
query,
user_id,
message.id,
from_source,
score)
return annotation
except Exception as e:
logger.warning(f'Query annotation failed, exception: {str(e)}.')
return None
return None

View File

@@ -0,0 +1,181 @@
from typing import cast, Optional, List
from langchain.tools import BaseTool
from core.agent.agent_executor import PlanningStrategy, AgentConfiguration, AgentExecutor
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
from core.entities.application_entities import DatasetEntity, ModelConfigEntity, InvokeFrom, DatasetRetrieveConfigEntity
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_runtime.entities.model_entities import ModelFeature
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.tool.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
from extensions.ext_database import db
from models.dataset import Dataset
class DatasetRetrievalFeature:
def retrieve(self, tenant_id: str,
model_config: ModelConfigEntity,
config: DatasetEntity,
query: str,
invoke_from: InvokeFrom,
show_retrieve_source: bool,
hit_callback: DatasetIndexToolCallbackHandler,
memory: Optional[TokenBufferMemory] = None) -> Optional[str]:
"""
Retrieve dataset.
:param tenant_id: tenant id
:param model_config: model config
:param config: dataset config
:param query: query
:param invoke_from: invoke from
:param show_retrieve_source: show retrieve source
:param hit_callback: hit callback
:param memory: memory
:return:
"""
dataset_ids = config.dataset_ids
retrieve_config = config.retrieve_config
# check model is support tool calling
model_type_instance = model_config.provider_model_bundle.model_type_instance
model_type_instance = cast(LargeLanguageModel, model_type_instance)
# get model schema
model_schema = model_type_instance.get_model_schema(
model=model_config.model,
credentials=model_config.credentials
)
if not model_schema:
return None
planning_strategy = PlanningStrategy.REACT_ROUTER
features = model_schema.features
if features:
if ModelFeature.TOOL_CALL in features \
or ModelFeature.MULTI_TOOL_CALL in features:
planning_strategy = PlanningStrategy.ROUTER
dataset_retriever_tools = self.to_dataset_retriever_tool(
tenant_id=tenant_id,
dataset_ids=dataset_ids,
retrieve_config=retrieve_config,
return_resource=show_retrieve_source,
invoke_from=invoke_from,
hit_callback=hit_callback
)
if len(dataset_retriever_tools) == 0:
return None
agent_configuration = AgentConfiguration(
strategy=planning_strategy,
model_config=model_config,
tools=dataset_retriever_tools,
memory=memory,
max_iterations=10,
max_execution_time=400.0,
early_stopping_method="generate"
)
agent_executor = AgentExecutor(agent_configuration)
should_use_agent = agent_executor.should_use_agent(query)
if not should_use_agent:
return None
result = agent_executor.run(query)
return result.output
def to_dataset_retriever_tool(self, tenant_id: str,
dataset_ids: list[str],
retrieve_config: DatasetRetrieveConfigEntity,
return_resource: bool,
invoke_from: InvokeFrom,
hit_callback: DatasetIndexToolCallbackHandler) \
-> Optional[List[BaseTool]]:
"""
A dataset tool is a tool that can be used to retrieve information from a dataset
:param tenant_id: tenant id
:param dataset_ids: dataset ids
:param retrieve_config: retrieve config
:param return_resource: return resource
:param invoke_from: invoke from
:param hit_callback: hit callback
"""
tools = []
available_datasets = []
for dataset_id in dataset_ids:
# get dataset from dataset id
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
# pass if dataset is not available
if not dataset:
continue
# pass if dataset is not available
if (dataset and dataset.available_document_count == 0
and dataset.available_document_count == 0):
continue
available_datasets.append(dataset)
if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
# get retrieval model config
default_retrieval_model = {
'search_method': 'semantic_search',
'reranking_enable': False,
'reranking_model': {
'reranking_provider_name': '',
'reranking_model_name': ''
},
'top_k': 2,
'score_threshold_enabled': False
}
for dataset in available_datasets:
retrieval_model_config = dataset.retrieval_model \
if dataset.retrieval_model else default_retrieval_model
# get top k
top_k = retrieval_model_config['top_k']
# get score threshold
score_threshold = None
score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
if score_threshold_enabled:
score_threshold = retrieval_model_config.get("score_threshold")
tool = DatasetRetrieverTool.from_dataset(
dataset=dataset,
top_k=top_k,
score_threshold=score_threshold,
hit_callbacks=[hit_callback],
return_resource=return_resource,
retriever_from=invoke_from.to_source()
)
tools.append(tool)
elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
tool = DatasetMultiRetrieverTool.from_dataset(
dataset_ids=[dataset.id for dataset in available_datasets],
tenant_id=tenant_id,
top_k=retrieve_config.top_k or 2,
score_threshold=(retrieve_config.score_threshold or 0.5)
if retrieve_config.reranking_model.get('score_threshold_enabled', False) else None,
hit_callbacks=[hit_callback],
return_resource=return_resource,
retriever_from=invoke_from.to_source(),
reranking_provider_name=retrieve_config.reranking_model.get('reranking_provider_name'),
reranking_model_name=retrieve_config.reranking_model.get('reranking_model_name')
)
tools.append(tool)
return tools

View File

@@ -0,0 +1,96 @@
import concurrent
import json
import logging
from concurrent.futures import ThreadPoolExecutor
from typing import Tuple, Optional
from flask import current_app, Flask
from core.entities.application_entities import ExternalDataVariableEntity
from core.external_data_tool.factory import ExternalDataToolFactory
logger = logging.getLogger(__name__)
class ExternalDataFetchFeature:
def fetch(self, tenant_id: str,
app_id: str,
external_data_tools: list[ExternalDataVariableEntity],
inputs: dict,
query: str) -> dict:
"""
Fill in variable inputs from external data tools if exists.
:param tenant_id: workspace id
:param app_id: app id
:param external_data_tools: external data tools configs
:param inputs: the inputs
:param query: the query
:return: the filled inputs
"""
# Group tools by type and config
grouped_tools = {}
for tool in external_data_tools:
tool_key = (tool.type, json.dumps(tool.config, sort_keys=True))
grouped_tools.setdefault(tool_key, []).append(tool)
results = {}
with ThreadPoolExecutor() as executor:
futures = {}
for tool in external_data_tools:
future = executor.submit(
self._query_external_data_tool,
current_app._get_current_object(),
tenant_id,
app_id,
tool,
inputs,
query
)
futures[future] = tool
for future in concurrent.futures.as_completed(futures):
tool_variable, result = future.result()
results[tool_variable] = result
inputs.update(results)
return inputs
def _query_external_data_tool(self, flask_app: Flask,
tenant_id: str,
app_id: str,
external_data_tool: ExternalDataVariableEntity,
inputs: dict,
query: str) -> Tuple[Optional[str], Optional[str]]:
"""
Query external data tool.
:param flask_app: flask app
:param tenant_id: tenant id
:param app_id: app id
:param external_data_tool: external data tool
:param inputs: inputs
:param query: query
:return:
"""
with flask_app.app_context():
tool_variable = external_data_tool.variable
tool_type = external_data_tool.type
tool_config = external_data_tool.config
external_data_tool_factory = ExternalDataToolFactory(
name=tool_type,
tenant_id=tenant_id,
app_id=app_id,
variable=tool_variable,
config=tool_config
)
# query external data tool
result = external_data_tool_factory.query(
inputs=inputs,
query=query
)
return tool_variable, result

View File

@@ -0,0 +1,32 @@
import logging
from core.entities.application_entities import ApplicationGenerateEntity
from core.helper import moderation
from core.model_runtime.entities.message_entities import PromptMessage
logger = logging.getLogger(__name__)
class HostingModerationFeature:
def check(self, application_generate_entity: ApplicationGenerateEntity,
prompt_messages: list[PromptMessage]) -> bool:
"""
Check hosting moderation
:param application_generate_entity: application generate entity
:param prompt_messages: prompt messages
:return:
"""
app_orchestration_config = application_generate_entity.app_orchestration_config_entity
model_config = app_orchestration_config.model_config
text = ""
for prompt_message in prompt_messages:
if isinstance(prompt_message.content, str):
text += prompt_message.content + "\n"
moderation_result = moderation.check_moderation(
model_config,
text
)
return moderation_result

View File

@@ -0,0 +1,50 @@
import logging
from typing import Tuple
from core.entities.application_entities import AppOrchestrationConfigEntity
from core.moderation.base import ModerationAction, ModerationException
from core.moderation.factory import ModerationFactory
logger = logging.getLogger(__name__)
class ModerationFeature:
def check(self, app_id: str,
tenant_id: str,
app_orchestration_config_entity: AppOrchestrationConfigEntity,
inputs: dict,
query: str) -> Tuple[bool, dict, str]:
"""
Process sensitive_word_avoidance.
:param app_id: app id
:param tenant_id: tenant id
:param app_orchestration_config_entity: app orchestration config entity
:param inputs: inputs
:param query: query
:return:
"""
if not app_orchestration_config_entity.sensitive_word_avoidance:
return False, inputs, query
sensitive_word_avoidance_config = app_orchestration_config_entity.sensitive_word_avoidance
moderation_type = sensitive_word_avoidance_config.type
moderation_factory = ModerationFactory(
name=moderation_type,
app_id=app_id,
tenant_id=tenant_id,
config=sensitive_word_avoidance_config.config
)
moderation_result = moderation_factory.moderation_for_inputs(inputs, query)
if not moderation_result.flagged:
return False, inputs, query
if moderation_result.action == ModerationAction.DIRECT_OUTPUT:
raise ModerationException(moderation_result.preset_response)
elif moderation_result.action == ModerationAction.OVERRIDED:
inputs = moderation_result.inputs
query = moderation_result.query
return True, inputs, query