improve: introduce isort for linting Python imports (#1983)

This commit is contained in:
Bowen Liang
2024-01-12 12:34:01 +08:00
committed by GitHub
parent cca9edc97a
commit cc9e74123c
413 changed files with 1635 additions and 1906 deletions

View File

@@ -1,10 +1,10 @@
import logging
from typing import Optional, List
from typing import List, Optional
from core.callback_handler.agent_loop_gather_callback_handler import AgentLoopGatherCallbackHandler
from core.model_runtime.callbacks.base_callback import Callback
from core.model_runtime.entities.llm_entities import LLMResultChunk, LLMResult
from core.model_runtime.entities.message_entities import PromptMessageTool, PromptMessage
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
from core.model_runtime.model_providers.__base.ai_model import AIModel
logger = logging.getLogger(__name__)

View File

@@ -1,12 +1,11 @@
from typing import List, cast
from langchain.schema import BaseMessage
from core.entities.application_entities import ModelConfigEntity
from core.entities.message_entities import lc_messages_to_prompt_messages
from core.model_runtime.entities.message_entities import PromptMessage
from core.model_runtime.entities.model_entities import ModelPropertyKey
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from langchain.schema import BaseMessage
class CalcTokenMixin:

View File

@@ -1,20 +1,19 @@
from typing import Tuple, List, Any, Union, Sequence, Optional, cast
from typing import Any, List, Optional, Sequence, Tuple, Union, cast
from langchain.agents import OpenAIFunctionsAgent, BaseSingleActionAgent
from core.entities.application_entities import ModelConfigEntity
from core.entities.message_entities import lc_messages_to_prompt_messages
from core.model_manager import ModelInstance
from core.model_runtime.entities.message_entities import PromptMessageTool
from core.third_party.langchain.llms.fake import FakeLLM
from langchain.agents import BaseSingleActionAgent, OpenAIFunctionsAgent
from langchain.agents.openai_functions_agent.base import _format_intermediate_steps, _parse_ai_message
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.prompts.chat import BaseMessagePromptTemplate
from langchain.schema import AgentAction, AgentFinish, SystemMessage, AIMessage
from langchain.schema import AgentAction, AgentFinish, AIMessage, SystemMessage
from langchain.tools import BaseTool
from pydantic import root_validator
from core.entities.application_entities import ModelConfigEntity
from core.model_manager import ModelInstance
from core.entities.message_entities import lc_messages_to_prompt_messages
from core.model_runtime.entities.message_entities import PromptMessageTool
from core.third_party.langchain.llms.fake import FakeLLM
class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
"""

View File

@@ -1,28 +1,26 @@
from typing import List, Tuple, Any, Union, Sequence, Optional, cast
from typing import Any, List, Optional, Sequence, Tuple, Union, cast
from langchain.agents import OpenAIFunctionsAgent, BaseSingleActionAgent
from langchain.agents.openai_functions_agent.base import _parse_ai_message, \
_format_intermediate_steps
from core.agent.agent.agent_llm_callback import AgentLLMCallback
from core.agent.agent.calc_token_mixin import CalcTokenMixin, ExceededLLMTokensLimitError
from core.chain.llm_chain import LLMChain
from core.entities.application_entities import ModelConfigEntity
from core.entities.message_entities import lc_messages_to_prompt_messages
from core.model_manager import ModelInstance
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.third_party.langchain.llms.fake import FakeLLM
from langchain.agents import BaseSingleActionAgent, OpenAIFunctionsAgent
from langchain.agents.openai_functions_agent.base import _format_intermediate_steps, _parse_ai_message
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.chat_models.openai import _convert_message_to_dict, _import_tiktoken
from langchain.memory.prompt import SUMMARY_PROMPT
from langchain.prompts.chat import BaseMessagePromptTemplate
from langchain.schema import AgentAction, AgentFinish, SystemMessage, AIMessage, HumanMessage, BaseMessage, \
get_buffer_string
from langchain.schema import (AgentAction, AgentFinish, AIMessage, BaseMessage, HumanMessage, SystemMessage,
get_buffer_string)
from langchain.tools import BaseTool
from pydantic import root_validator
from core.agent.agent.agent_llm_callback import AgentLLMCallback
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError, CalcTokenMixin
from core.chain.llm_chain import LLMChain
from core.entities.application_entities import ModelConfigEntity
from core.model_manager import ModelInstance
from core.entities.message_entities import lc_messages_to_prompt_messages
from core.model_runtime.entities.message_entities import PromptMessageTool, PromptMessage
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.third_party.langchain.llms.fake import FakeLLM
class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, CalcTokenMixin):
moving_summary_buffer: str = ""

View File

@@ -2,8 +2,8 @@ import json
import re
from typing import Union
from langchain.agents.structured_chat.output_parser import StructuredChatOutputParser as LCStructuredChatOutputParser, \
logger
from langchain.agents.structured_chat.output_parser import StructuredChatOutputParser as LCStructuredChatOutputParser
from langchain.agents.structured_chat.output_parser import logger
from langchain.schema import AgentAction, AgentFinish, OutputParserException

View File

@@ -1,18 +1,17 @@
import re
from typing import List, Tuple, Any, Union, Sequence, Optional, cast
from langchain import BasePromptTemplate, PromptTemplate
from langchain.agents import StructuredChatAgent, AgentOutputParser, Agent
from langchain.agents.structured_chat.base import HUMAN_MESSAGE_TEMPLATE
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate
from langchain.schema import AgentAction, AgentFinish, OutputParserException
from langchain.tools import BaseTool
from langchain.agents.structured_chat.prompt import PREFIX, SUFFIX
from typing import Any, List, Optional, Sequence, Tuple, Union, cast
from core.chain.llm_chain import LLMChain
from core.entities.application_entities import ModelConfigEntity
from langchain import BasePromptTemplate, PromptTemplate
from langchain.agents import Agent, AgentOutputParser, StructuredChatAgent
from langchain.agents.structured_chat.base import HUMAN_MESSAGE_TEMPLATE
from langchain.agents.structured_chat.prompt import PREFIX, SUFFIX
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate
from langchain.schema import AgentAction, AgentFinish, OutputParserException
from langchain.tools import BaseTool
FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
The nouns in the format of "Thought", "Action", "Action Input", "Final Answer" must be expressed in English.

View File

@@ -1,23 +1,22 @@
import re
from typing import List, Tuple, Any, Union, Sequence, Optional, cast
from langchain import BasePromptTemplate, PromptTemplate
from langchain.agents import StructuredChatAgent, AgentOutputParser, Agent
from langchain.agents.structured_chat.base import HUMAN_MESSAGE_TEMPLATE
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.memory.prompt import SUMMARY_PROMPT
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate
from langchain.schema import AgentAction, AgentFinish, AIMessage, HumanMessage, OutputParserException, BaseMessage, \
get_buffer_string
from langchain.tools import BaseTool
from langchain.agents.structured_chat.prompt import PREFIX, SUFFIX
from typing import Any, List, Optional, Sequence, Tuple, Union, cast
from core.agent.agent.agent_llm_callback import AgentLLMCallback
from core.agent.agent.calc_token_mixin import CalcTokenMixin, ExceededLLMTokensLimitError
from core.chain.llm_chain import LLMChain
from core.entities.application_entities import ModelConfigEntity
from core.entities.message_entities import lc_messages_to_prompt_messages
from langchain import BasePromptTemplate, PromptTemplate
from langchain.agents import Agent, AgentOutputParser, StructuredChatAgent
from langchain.agents.structured_chat.base import HUMAN_MESSAGE_TEMPLATE
from langchain.agents.structured_chat.prompt import PREFIX, SUFFIX
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.memory.prompt import SUMMARY_PROMPT
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate
from langchain.schema import (AgentAction, AgentFinish, AIMessage, BaseMessage, HumanMessage, OutputParserException,
get_buffer_string)
from langchain.tools import BaseTool
FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
The nouns in the format of "Thought", "Action", "Action Input", "Final Answer" must be expressed in English.

View File

@@ -1,11 +1,6 @@
import enum
import logging
from typing import Union, Optional
from langchain.agents import BaseSingleActionAgent, BaseMultiActionAgent
from langchain.callbacks.manager import Callbacks
from langchain.tools import BaseTool
from pydantic import BaseModel, Extra
from typing import Optional, Union
from core.agent.agent.agent_llm_callback import AgentLLMCallback
from core.agent.agent.multi_dataset_router_agent import MultiDatasetRouterAgent
@@ -13,8 +8,6 @@ from core.agent.agent.openai_function_call import AutoSummarizingOpenAIFunctionC
from core.agent.agent.output_parser.structured_chat import StructuredChatOutputParser
from core.agent.agent.structed_multi_dataset_router_agent import StructuredMultiDatasetRouterAgent
from core.agent.agent.structured_chat import AutoSummarizingStructuredChatAgent
from langchain.agents import AgentExecutor as LCAgentExecutor
from core.entities.application_entities import ModelConfigEntity
from core.entities.message_entities import prompt_messages_to_lc_messages
from core.helper import moderation
@@ -22,6 +15,11 @@ from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_runtime.errors.invoke import InvokeError
from core.tool.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
from langchain.agents import AgentExecutor as LCAgentExecutor
from langchain.agents import BaseMultiActionAgent, BaseSingleActionAgent
from langchain.callbacks.manager import Callbacks
from langchain.tools import BaseTool
from pydantic import BaseModel, Extra
class PlanningStrategy(str, enum.Enum):