mirror of
http://112.124.100.131/huang.ze/ebiz-dify-ai.git
synced 2025-12-09 10:56:52 +08:00
chore: extract retrival method literal values into enum (#5060)
This commit is contained in:
@@ -6,11 +6,12 @@ from flask import Flask, current_app
|
||||
from core.rag.data_post_processor.data_post_processor import DataPostProcessor
|
||||
from core.rag.datasource.keyword.keyword_factory import Keyword
|
||||
from core.rag.datasource.vdb.vector_factory import Vector
|
||||
from core.rag.retrieval.retrival_methods import RetrievalMethod
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import Dataset
|
||||
|
||||
default_retrieval_model = {
|
||||
'search_method': 'semantic_search',
|
||||
'search_method': RetrievalMethod.SEMANTIC_SEARCH,
|
||||
'reranking_enable': False,
|
||||
'reranking_model': {
|
||||
'reranking_provider_name': '',
|
||||
@@ -47,7 +48,7 @@ class RetrievalService:
|
||||
threads.append(keyword_thread)
|
||||
keyword_thread.start()
|
||||
# retrieval_model source with semantic
|
||||
if retrival_method == 'semantic_search' or retrival_method == 'hybrid_search':
|
||||
if RetrievalMethod.is_support_semantic_search(retrival_method):
|
||||
embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
|
||||
'flask_app': current_app._get_current_object(),
|
||||
'dataset_id': dataset_id,
|
||||
@@ -63,7 +64,7 @@ class RetrievalService:
|
||||
embedding_thread.start()
|
||||
|
||||
# retrieval source with full text
|
||||
if retrival_method == 'full_text_search' or retrival_method == 'hybrid_search':
|
||||
if RetrievalMethod.is_support_fulltext_search(retrival_method):
|
||||
full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search, kwargs={
|
||||
'flask_app': current_app._get_current_object(),
|
||||
'dataset_id': dataset_id,
|
||||
@@ -85,7 +86,7 @@ class RetrievalService:
|
||||
exception_message = ';\n'.join(exceptions)
|
||||
raise Exception(exception_message)
|
||||
|
||||
if retrival_method == 'hybrid_search':
|
||||
if retrival_method == RetrievalMethod.HYBRID_SEARCH:
|
||||
data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
|
||||
all_documents = data_post_processor.invoke(
|
||||
query=query,
|
||||
@@ -141,7 +142,7 @@ class RetrievalService:
|
||||
)
|
||||
|
||||
if documents:
|
||||
if reranking_model and retrival_method == 'semantic_search':
|
||||
if reranking_model and retrival_method == RetrievalMethod.SEMANTIC_SEARCH:
|
||||
data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
|
||||
all_documents.extend(data_post_processor.invoke(
|
||||
query=query,
|
||||
@@ -173,7 +174,7 @@ class RetrievalService:
|
||||
top_k=top_k
|
||||
)
|
||||
if documents:
|
||||
if reranking_model and retrival_method == 'full_text_search':
|
||||
if reranking_model and retrival_method == RetrievalMethod.FULL_TEXT_SEARCH:
|
||||
data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
|
||||
all_documents.extend(data_post_processor.invoke(
|
||||
query=query,
|
||||
|
||||
@@ -15,6 +15,7 @@ from core.model_runtime.model_providers.__base.large_language_model import Large
|
||||
from core.rag.datasource.retrieval_service import RetrievalService
|
||||
from core.rag.models.document import Document
|
||||
from core.rag.rerank.rerank import RerankRunner
|
||||
from core.rag.retrieval.retrival_methods import RetrievalMethod
|
||||
from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
|
||||
from core.rag.retrieval.router.multi_dataset_react_route import ReactMultiDatasetRouter
|
||||
from core.tools.tool.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
|
||||
@@ -25,7 +26,7 @@ from models.dataset import Dataset, DatasetQuery, DocumentSegment
|
||||
from models.dataset import Document as DatasetDocument
|
||||
|
||||
default_retrieval_model = {
|
||||
'search_method': 'semantic_search',
|
||||
'search_method': RetrievalMethod.SEMANTIC_SEARCH,
|
||||
'reranking_enable': False,
|
||||
'reranking_model': {
|
||||
'reranking_provider_name': '',
|
||||
@@ -419,7 +420,7 @@ class DatasetRetrieval:
|
||||
if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
|
||||
# get retrieval model config
|
||||
default_retrieval_model = {
|
||||
'search_method': 'semantic_search',
|
||||
'search_method': RetrievalMethod.SEMANTIC_SEARCH,
|
||||
'reranking_enable': False,
|
||||
'reranking_model': {
|
||||
'reranking_provider_name': '',
|
||||
|
||||
15
api/core/rag/retrieval/retrival_methods.py
Normal file
15
api/core/rag/retrieval/retrival_methods.py
Normal file
@@ -0,0 +1,15 @@
|
||||
from enum import Enum
|
||||
|
||||
|
||||
class RetrievalMethod(str, Enum):
|
||||
SEMANTIC_SEARCH = 'semantic_search'
|
||||
FULL_TEXT_SEARCH = 'full_text_search'
|
||||
HYBRID_SEARCH = 'hybrid_search'
|
||||
|
||||
@staticmethod
|
||||
def is_support_semantic_search(retrieval_method: str) -> bool:
|
||||
return retrieval_method in {RetrievalMethod.SEMANTIC_SEARCH, RetrievalMethod.HYBRID_SEARCH}
|
||||
|
||||
@staticmethod
|
||||
def is_support_fulltext_search(retrieval_method: str) -> bool:
|
||||
return retrieval_method in {RetrievalMethod.FULL_TEXT_SEARCH, RetrievalMethod.HYBRID_SEARCH}
|
||||
@@ -8,12 +8,13 @@ from core.model_manager import ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.rag.datasource.retrieval_service import RetrievalService
|
||||
from core.rag.rerank.rerank import RerankRunner
|
||||
from core.rag.retrieval.retrival_methods import RetrievalMethod
|
||||
from core.tools.tool.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import Dataset, Document, DocumentSegment
|
||||
|
||||
default_retrieval_model = {
|
||||
'search_method': 'semantic_search',
|
||||
'search_method': RetrievalMethod.SEMANTIC_SEARCH,
|
||||
'reranking_enable': False,
|
||||
'reranking_model': {
|
||||
'reranking_provider_name': '',
|
||||
|
||||
@@ -2,12 +2,13 @@
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from core.rag.datasource.retrieval_service import RetrievalService
|
||||
from core.rag.retrieval.retrival_methods import RetrievalMethod
|
||||
from core.tools.tool.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import Dataset, Document, DocumentSegment
|
||||
|
||||
default_retrieval_model = {
|
||||
'search_method': 'semantic_search',
|
||||
'search_method': RetrievalMethod.SEMANTIC_SEARCH,
|
||||
'reranking_enable': False,
|
||||
'reranking_model': {
|
||||
'reranking_provider_name': '',
|
||||
|
||||
@@ -11,6 +11,7 @@ from core.model_manager import ModelInstance, ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.rag.retrieval.dataset_retrieval import DatasetRetrieval
|
||||
from core.rag.retrieval.retrival_methods import RetrievalMethod
|
||||
from core.workflow.entities.base_node_data_entities import BaseNodeData
|
||||
from core.workflow.entities.node_entities import NodeRunResult, NodeType
|
||||
from core.workflow.entities.variable_pool import VariablePool
|
||||
@@ -21,7 +22,7 @@ from models.dataset import Dataset, Document, DocumentSegment
|
||||
from models.workflow import WorkflowNodeExecutionStatus
|
||||
|
||||
default_retrieval_model = {
|
||||
'search_method': 'semantic_search',
|
||||
'search_method': RetrievalMethod.SEMANTIC_SEARCH,
|
||||
'reranking_enable': False,
|
||||
'reranking_model': {
|
||||
'reranking_provider_name': '',
|
||||
|
||||
Reference in New Issue
Block a user