mirror of
http://112.124.100.131/huang.ze/ebiz-dify-ai.git
synced 2025-12-09 10:56:52 +08:00
feat: optimize template parse (#460)
This commit is contained in:
@@ -3,13 +3,13 @@ import re
|
||||
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, AIMessagePromptTemplate
|
||||
from langchain.schema import BaseMessage
|
||||
|
||||
from core.prompt.prompt_template import OutLinePromptTemplate
|
||||
from core.prompt.prompt_template import JinjaPromptTemplate
|
||||
|
||||
|
||||
class PromptBuilder:
|
||||
@classmethod
|
||||
def to_system_message(cls, prompt_content: str, inputs: dict) -> BaseMessage:
|
||||
prompt_template = OutLinePromptTemplate.from_template(prompt_content)
|
||||
prompt_template = JinjaPromptTemplate.from_template(prompt_content)
|
||||
system_prompt_template = SystemMessagePromptTemplate(prompt=prompt_template)
|
||||
prompt_inputs = {k: inputs[k] for k in system_prompt_template.input_variables if k in inputs}
|
||||
system_message = system_prompt_template.format(**prompt_inputs)
|
||||
@@ -17,7 +17,7 @@ class PromptBuilder:
|
||||
|
||||
@classmethod
|
||||
def to_ai_message(cls, prompt_content: str, inputs: dict) -> BaseMessage:
|
||||
prompt_template = OutLinePromptTemplate.from_template(prompt_content)
|
||||
prompt_template = JinjaPromptTemplate.from_template(prompt_content)
|
||||
ai_prompt_template = AIMessagePromptTemplate(prompt=prompt_template)
|
||||
prompt_inputs = {k: inputs[k] for k in ai_prompt_template.input_variables if k in inputs}
|
||||
ai_message = ai_prompt_template.format(**prompt_inputs)
|
||||
@@ -25,13 +25,14 @@ class PromptBuilder:
|
||||
|
||||
@classmethod
|
||||
def to_human_message(cls, prompt_content: str, inputs: dict) -> BaseMessage:
|
||||
prompt_template = OutLinePromptTemplate.from_template(prompt_content)
|
||||
prompt_template = JinjaPromptTemplate.from_template(prompt_content)
|
||||
human_prompt_template = HumanMessagePromptTemplate(prompt=prompt_template)
|
||||
human_message = human_prompt_template.format(**inputs)
|
||||
return human_message
|
||||
|
||||
@classmethod
|
||||
def process_template(cls, template: str):
|
||||
processed_template = re.sub(r'\{([a-zA-Z_]\w+?)\}', r'\1', template)
|
||||
processed_template = re.sub(r'\{\{([a-zA-Z_]\w+?)\}\}', r'{\1}', processed_template)
|
||||
processed_template = re.sub(r'\{{2}(.+)\}{2}', r'{\1}', template)
|
||||
# processed_template = re.sub(r'\{([a-zA-Z_]\w+?)\}', r'\1', template)
|
||||
# processed_template = re.sub(r'\{\{([a-zA-Z_]\w+?)\}\}', r'{\1}', processed_template)
|
||||
return processed_template
|
||||
|
||||
@@ -1,10 +1,33 @@
|
||||
import re
|
||||
from typing import Any
|
||||
|
||||
from jinja2 import Environment, meta
|
||||
from langchain import PromptTemplate
|
||||
from langchain.formatting import StrictFormatter
|
||||
|
||||
|
||||
class JinjaPromptTemplate(PromptTemplate):
|
||||
template_format: str = "jinja2"
|
||||
"""The format of the prompt template. Options are: 'f-string', 'jinja2'."""
|
||||
|
||||
@classmethod
|
||||
def from_template(cls, template: str, **kwargs: Any) -> PromptTemplate:
|
||||
"""Load a prompt template from a template."""
|
||||
env = Environment()
|
||||
ast = env.parse(template)
|
||||
input_variables = meta.find_undeclared_variables(ast)
|
||||
|
||||
if "partial_variables" in kwargs:
|
||||
partial_variables = kwargs["partial_variables"]
|
||||
input_variables = {
|
||||
var for var in input_variables if var not in partial_variables
|
||||
}
|
||||
|
||||
return cls(
|
||||
input_variables=list(sorted(input_variables)), template=template, **kwargs
|
||||
)
|
||||
|
||||
|
||||
class OutLinePromptTemplate(PromptTemplate):
|
||||
@classmethod
|
||||
def from_template(cls, template: str, **kwargs: Any) -> PromptTemplate:
|
||||
@@ -16,6 +39,24 @@ class OutLinePromptTemplate(PromptTemplate):
|
||||
input_variables=list(sorted(input_variables)), template=template, **kwargs
|
||||
)
|
||||
|
||||
def format(self, **kwargs: Any) -> str:
|
||||
"""Format the prompt with the inputs.
|
||||
|
||||
Args:
|
||||
kwargs: Any arguments to be passed to the prompt template.
|
||||
|
||||
Returns:
|
||||
A formatted string.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
prompt.format(variable1="foo")
|
||||
"""
|
||||
kwargs = self._merge_partial_and_user_variables(**kwargs)
|
||||
return OneLineFormatter().format(self.template, **kwargs)
|
||||
|
||||
|
||||
class OneLineFormatter(StrictFormatter):
|
||||
def parse(self, format_string):
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
CONVERSATION_TITLE_PROMPT = (
|
||||
"Human:{query}\n-----\n"
|
||||
"Human:{{query}}\n-----\n"
|
||||
"Help me summarize the intent of what the human said and provide a title, the title should not exceed 20 words.\n"
|
||||
"If the human said is conducted in Chinese, you should return a Chinese title.\n"
|
||||
"If the human said is conducted in English, you should return an English title.\n"
|
||||
@@ -19,7 +19,7 @@ CONVERSATION_SUMMARY_PROMPT = (
|
||||
INTRODUCTION_GENERATE_PROMPT = (
|
||||
"I am designing a product for users to interact with an AI through dialogue. "
|
||||
"The Prompt given to the AI before the conversation is:\n\n"
|
||||
"```\n{prompt}\n```\n\n"
|
||||
"```\n{{prompt}}\n```\n\n"
|
||||
"Please generate a brief introduction of no more than 50 words that greets the user, based on this Prompt. "
|
||||
"Do not reveal the developer's motivation or deep logic behind the Prompt, "
|
||||
"but focus on building a relationship with the user:\n"
|
||||
@@ -27,13 +27,13 @@ INTRODUCTION_GENERATE_PROMPT = (
|
||||
|
||||
MORE_LIKE_THIS_GENERATE_PROMPT = (
|
||||
"-----\n"
|
||||
"{original_completion}\n"
|
||||
"{{original_completion}}\n"
|
||||
"-----\n\n"
|
||||
"Please use the above content as a sample for generating the result, "
|
||||
"and include key information points related to the original sample in the result. "
|
||||
"Try to rephrase this information in different ways and predict according to the rules below.\n\n"
|
||||
"-----\n"
|
||||
"{prompt}\n"
|
||||
"{{prompt}}\n"
|
||||
)
|
||||
|
||||
SUGGESTED_QUESTIONS_AFTER_ANSWER_INSTRUCTION_PROMPT = (
|
||||
|
||||
Reference in New Issue
Block a user