mirror of
http://112.124.100.131/huang.ze/ebiz-dify-ai.git
synced 2025-12-08 10:26:50 +08:00
feat: Allow using file variables directly in the LLM node and support more file types. (#10679)
Co-authored-by: Joel <iamjoel007@gmail.com>
This commit is contained in:
@@ -11,7 +11,6 @@ from core.model_runtime.entities.message_entities import (
|
||||
)
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.azure_ai_studio.llm.llm import AzureAIStudioLargeLanguageModel
|
||||
from tests.integration_tests.model_runtime.__mock.azure_ai_studio import setup_azure_ai_studio_mock
|
||||
|
||||
|
||||
@pytest.mark.parametrize("setup_azure_ai_studio_mock", [["chat"]], indirect=True)
|
||||
|
||||
@@ -4,29 +4,21 @@ import pytest
|
||||
|
||||
from core.model_runtime.entities.rerank_entities import RerankResult
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.azure_ai_studio.rerank.rerank import AzureAIStudioRerankModel
|
||||
from core.model_runtime.model_providers.azure_ai_studio.rerank.rerank import AzureRerankModel
|
||||
|
||||
|
||||
def test_validate_credentials():
|
||||
model = AzureAIStudioRerankModel()
|
||||
model = AzureRerankModel()
|
||||
|
||||
with pytest.raises(CredentialsValidateFailedError):
|
||||
model.validate_credentials(
|
||||
model="azure-ai-studio-rerank-v1",
|
||||
credentials={"api_key": "invalid_key", "api_base": os.getenv("AZURE_AI_STUDIO_API_BASE")},
|
||||
query="What is the capital of the United States?",
|
||||
docs=[
|
||||
"Carson City is the capital city of the American state of Nevada. At the 2010 United States "
|
||||
"Census, Carson City had a population of 55,274.",
|
||||
"The Commonwealth of the Northern Mariana Islands is a group of islands in the Pacific Ocean that "
|
||||
"are a political division controlled by the United States. Its capital is Saipan.",
|
||||
],
|
||||
score_threshold=0.8,
|
||||
)
|
||||
|
||||
|
||||
def test_invoke_model():
|
||||
model = AzureAIStudioRerankModel()
|
||||
model = AzureRerankModel()
|
||||
|
||||
result = model.invoke(
|
||||
model="azure-ai-studio-rerank-v1",
|
||||
|
||||
@@ -1,125 +1,484 @@
|
||||
from collections.abc import Sequence
|
||||
from typing import Optional
|
||||
|
||||
import pytest
|
||||
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom
|
||||
from configs import dify_config
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
|
||||
from core.entities.provider_configuration import ProviderConfiguration, ProviderModelBundle
|
||||
from core.entities.provider_entities import CustomConfiguration, SystemConfiguration
|
||||
from core.file import File, FileTransferMethod, FileType
|
||||
from core.model_runtime.entities.message_entities import ImagePromptMessageContent
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
ImagePromptMessageContent,
|
||||
PromptMessage,
|
||||
PromptMessageRole,
|
||||
SystemPromptMessage,
|
||||
TextPromptMessageContent,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelFeature, ModelType, ProviderModel
|
||||
from core.model_runtime.entities.provider_entities import ConfigurateMethod, ProviderEntity
|
||||
from core.model_runtime.model_providers.model_provider_factory import ModelProviderFactory
|
||||
from core.prompt.entities.advanced_prompt_entities import MemoryConfig
|
||||
from core.variables import ArrayAnySegment, ArrayFileSegment, NoneSegment
|
||||
from core.workflow.entities.variable_pool import VariablePool
|
||||
from core.workflow.graph_engine import Graph, GraphInitParams, GraphRuntimeState
|
||||
from core.workflow.nodes.answer import AnswerStreamGenerateRoute
|
||||
from core.workflow.nodes.end import EndStreamParam
|
||||
from core.workflow.nodes.llm.entities import ContextConfig, LLMNodeData, ModelConfig, VisionConfig, VisionConfigOptions
|
||||
from core.workflow.nodes.llm.entities import (
|
||||
ContextConfig,
|
||||
LLMNodeChatModelMessage,
|
||||
LLMNodeData,
|
||||
ModelConfig,
|
||||
VisionConfig,
|
||||
VisionConfigOptions,
|
||||
)
|
||||
from core.workflow.nodes.llm.node import LLMNode
|
||||
from models.enums import UserFrom
|
||||
from models.provider import ProviderType
|
||||
from models.workflow import WorkflowType
|
||||
from tests.unit_tests.core.workflow.nodes.llm.test_scenarios import LLMNodeTestScenario
|
||||
|
||||
|
||||
class TestLLMNode:
|
||||
@pytest.fixture
|
||||
def llm_node(self):
|
||||
data = LLMNodeData(
|
||||
title="Test LLM",
|
||||
model=ModelConfig(provider="openai", name="gpt-3.5-turbo", mode="chat", completion_params={}),
|
||||
prompt_template=[],
|
||||
memory=None,
|
||||
context=ContextConfig(enabled=False),
|
||||
vision=VisionConfig(
|
||||
enabled=True,
|
||||
configs=VisionConfigOptions(
|
||||
variable_selector=["sys", "files"],
|
||||
detail=ImagePromptMessageContent.DETAIL.HIGH,
|
||||
),
|
||||
),
|
||||
)
|
||||
variable_pool = VariablePool(
|
||||
system_variables={},
|
||||
user_inputs={},
|
||||
)
|
||||
node = LLMNode(
|
||||
id="1",
|
||||
config={
|
||||
"id": "1",
|
||||
"data": data.model_dump(),
|
||||
},
|
||||
graph_init_params=GraphInitParams(
|
||||
tenant_id="1",
|
||||
app_id="1",
|
||||
workflow_type=WorkflowType.WORKFLOW,
|
||||
workflow_id="1",
|
||||
graph_config={},
|
||||
user_id="1",
|
||||
user_from=UserFrom.ACCOUNT,
|
||||
invoke_from=InvokeFrom.SERVICE_API,
|
||||
call_depth=0,
|
||||
),
|
||||
graph=Graph(
|
||||
root_node_id="1",
|
||||
answer_stream_generate_routes=AnswerStreamGenerateRoute(
|
||||
answer_dependencies={},
|
||||
answer_generate_route={},
|
||||
),
|
||||
end_stream_param=EndStreamParam(
|
||||
end_dependencies={},
|
||||
end_stream_variable_selector_mapping={},
|
||||
),
|
||||
),
|
||||
graph_runtime_state=GraphRuntimeState(
|
||||
variable_pool=variable_pool,
|
||||
start_at=0,
|
||||
),
|
||||
)
|
||||
return node
|
||||
class MockTokenBufferMemory:
|
||||
def __init__(self, history_messages=None):
|
||||
self.history_messages = history_messages or []
|
||||
|
||||
def test_fetch_files_with_file_segment(self, llm_node):
|
||||
file = File(
|
||||
def get_history_prompt_messages(
|
||||
self, max_token_limit: int = 2000, message_limit: Optional[int] = None
|
||||
) -> Sequence[PromptMessage]:
|
||||
if message_limit is not None:
|
||||
return self.history_messages[-message_limit * 2 :]
|
||||
return self.history_messages
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def llm_node():
|
||||
data = LLMNodeData(
|
||||
title="Test LLM",
|
||||
model=ModelConfig(provider="openai", name="gpt-3.5-turbo", mode="chat", completion_params={}),
|
||||
prompt_template=[],
|
||||
memory=None,
|
||||
context=ContextConfig(enabled=False),
|
||||
vision=VisionConfig(
|
||||
enabled=True,
|
||||
configs=VisionConfigOptions(
|
||||
variable_selector=["sys", "files"],
|
||||
detail=ImagePromptMessageContent.DETAIL.HIGH,
|
||||
),
|
||||
),
|
||||
)
|
||||
variable_pool = VariablePool(
|
||||
system_variables={},
|
||||
user_inputs={},
|
||||
)
|
||||
node = LLMNode(
|
||||
id="1",
|
||||
config={
|
||||
"id": "1",
|
||||
"data": data.model_dump(),
|
||||
},
|
||||
graph_init_params=GraphInitParams(
|
||||
tenant_id="1",
|
||||
app_id="1",
|
||||
workflow_type=WorkflowType.WORKFLOW,
|
||||
workflow_id="1",
|
||||
graph_config={},
|
||||
user_id="1",
|
||||
user_from=UserFrom.ACCOUNT,
|
||||
invoke_from=InvokeFrom.SERVICE_API,
|
||||
call_depth=0,
|
||||
),
|
||||
graph=Graph(
|
||||
root_node_id="1",
|
||||
answer_stream_generate_routes=AnswerStreamGenerateRoute(
|
||||
answer_dependencies={},
|
||||
answer_generate_route={},
|
||||
),
|
||||
end_stream_param=EndStreamParam(
|
||||
end_dependencies={},
|
||||
end_stream_variable_selector_mapping={},
|
||||
),
|
||||
),
|
||||
graph_runtime_state=GraphRuntimeState(
|
||||
variable_pool=variable_pool,
|
||||
start_at=0,
|
||||
),
|
||||
)
|
||||
return node
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def model_config():
|
||||
# Create actual provider and model type instances
|
||||
model_provider_factory = ModelProviderFactory()
|
||||
provider_instance = model_provider_factory.get_provider_instance("openai")
|
||||
model_type_instance = provider_instance.get_model_instance(ModelType.LLM)
|
||||
|
||||
# Create a ProviderModelBundle
|
||||
provider_model_bundle = ProviderModelBundle(
|
||||
configuration=ProviderConfiguration(
|
||||
tenant_id="1",
|
||||
provider=provider_instance.get_provider_schema(),
|
||||
preferred_provider_type=ProviderType.CUSTOM,
|
||||
using_provider_type=ProviderType.CUSTOM,
|
||||
system_configuration=SystemConfiguration(enabled=False),
|
||||
custom_configuration=CustomConfiguration(provider=None),
|
||||
model_settings=[],
|
||||
),
|
||||
provider_instance=provider_instance,
|
||||
model_type_instance=model_type_instance,
|
||||
)
|
||||
|
||||
# Create and return a ModelConfigWithCredentialsEntity
|
||||
return ModelConfigWithCredentialsEntity(
|
||||
provider="openai",
|
||||
model="gpt-3.5-turbo",
|
||||
model_schema=AIModelEntity(
|
||||
model="gpt-3.5-turbo",
|
||||
label=I18nObject(en_US="GPT-3.5 Turbo"),
|
||||
model_type=ModelType.LLM,
|
||||
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
|
||||
model_properties={},
|
||||
),
|
||||
mode="chat",
|
||||
credentials={},
|
||||
parameters={},
|
||||
provider_model_bundle=provider_model_bundle,
|
||||
)
|
||||
|
||||
|
||||
def test_fetch_files_with_file_segment(llm_node):
|
||||
file = File(
|
||||
id="1",
|
||||
tenant_id="test",
|
||||
type=FileType.IMAGE,
|
||||
filename="test.jpg",
|
||||
transfer_method=FileTransferMethod.LOCAL_FILE,
|
||||
related_id="1",
|
||||
)
|
||||
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], file)
|
||||
|
||||
result = llm_node._fetch_files(selector=["sys", "files"])
|
||||
assert result == [file]
|
||||
|
||||
|
||||
def test_fetch_files_with_array_file_segment(llm_node):
|
||||
files = [
|
||||
File(
|
||||
id="1",
|
||||
tenant_id="test",
|
||||
type=FileType.IMAGE,
|
||||
filename="test.jpg",
|
||||
filename="test1.jpg",
|
||||
transfer_method=FileTransferMethod.LOCAL_FILE,
|
||||
related_id="1",
|
||||
),
|
||||
File(
|
||||
id="2",
|
||||
tenant_id="test",
|
||||
type=FileType.IMAGE,
|
||||
filename="test2.jpg",
|
||||
transfer_method=FileTransferMethod.LOCAL_FILE,
|
||||
related_id="2",
|
||||
),
|
||||
]
|
||||
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], ArrayFileSegment(value=files))
|
||||
|
||||
result = llm_node._fetch_files(selector=["sys", "files"])
|
||||
assert result == files
|
||||
|
||||
|
||||
def test_fetch_files_with_none_segment(llm_node):
|
||||
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], NoneSegment())
|
||||
|
||||
result = llm_node._fetch_files(selector=["sys", "files"])
|
||||
assert result == []
|
||||
|
||||
|
||||
def test_fetch_files_with_array_any_segment(llm_node):
|
||||
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], ArrayAnySegment(value=[]))
|
||||
|
||||
result = llm_node._fetch_files(selector=["sys", "files"])
|
||||
assert result == []
|
||||
|
||||
|
||||
def test_fetch_files_with_non_existent_variable(llm_node):
|
||||
result = llm_node._fetch_files(selector=["sys", "files"])
|
||||
assert result == []
|
||||
|
||||
|
||||
def test_fetch_prompt_messages__vison_disabled(faker, llm_node, model_config):
|
||||
prompt_template = []
|
||||
llm_node.node_data.prompt_template = prompt_template
|
||||
|
||||
fake_vision_detail = faker.random_element(
|
||||
[ImagePromptMessageContent.DETAIL.HIGH, ImagePromptMessageContent.DETAIL.LOW]
|
||||
)
|
||||
fake_remote_url = faker.url()
|
||||
files = [
|
||||
File(
|
||||
id="1",
|
||||
tenant_id="test",
|
||||
type=FileType.IMAGE,
|
||||
filename="test1.jpg",
|
||||
transfer_method=FileTransferMethod.REMOTE_URL,
|
||||
remote_url=fake_remote_url,
|
||||
)
|
||||
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], file)
|
||||
]
|
||||
|
||||
result = llm_node._fetch_files(selector=["sys", "files"])
|
||||
assert result == [file]
|
||||
fake_query = faker.sentence()
|
||||
|
||||
def test_fetch_files_with_array_file_segment(self, llm_node):
|
||||
files = [
|
||||
File(
|
||||
id="1",
|
||||
tenant_id="test",
|
||||
type=FileType.IMAGE,
|
||||
filename="test1.jpg",
|
||||
transfer_method=FileTransferMethod.LOCAL_FILE,
|
||||
related_id="1",
|
||||
),
|
||||
File(
|
||||
id="2",
|
||||
tenant_id="test",
|
||||
type=FileType.IMAGE,
|
||||
filename="test2.jpg",
|
||||
transfer_method=FileTransferMethod.LOCAL_FILE,
|
||||
related_id="2",
|
||||
),
|
||||
]
|
||||
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], ArrayFileSegment(value=files))
|
||||
prompt_messages, _ = llm_node._fetch_prompt_messages(
|
||||
user_query=fake_query,
|
||||
user_files=files,
|
||||
context=None,
|
||||
memory=None,
|
||||
model_config=model_config,
|
||||
prompt_template=prompt_template,
|
||||
memory_config=None,
|
||||
vision_enabled=False,
|
||||
vision_detail=fake_vision_detail,
|
||||
variable_pool=llm_node.graph_runtime_state.variable_pool,
|
||||
jinja2_variables=[],
|
||||
)
|
||||
|
||||
result = llm_node._fetch_files(selector=["sys", "files"])
|
||||
assert result == files
|
||||
assert prompt_messages == [UserPromptMessage(content=fake_query)]
|
||||
|
||||
def test_fetch_files_with_none_segment(self, llm_node):
|
||||
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], NoneSegment())
|
||||
|
||||
result = llm_node._fetch_files(selector=["sys", "files"])
|
||||
assert result == []
|
||||
def test_fetch_prompt_messages__basic(faker, llm_node, model_config):
|
||||
# Setup dify config
|
||||
dify_config.MULTIMODAL_SEND_IMAGE_FORMAT = "url"
|
||||
dify_config.MULTIMODAL_SEND_VIDEO_FORMAT = "url"
|
||||
|
||||
def test_fetch_files_with_array_any_segment(self, llm_node):
|
||||
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], ArrayAnySegment(value=[]))
|
||||
# Generate fake values for prompt template
|
||||
fake_assistant_prompt = faker.sentence()
|
||||
fake_query = faker.sentence()
|
||||
fake_context = faker.sentence()
|
||||
fake_window_size = faker.random_int(min=1, max=3)
|
||||
fake_vision_detail = faker.random_element(
|
||||
[ImagePromptMessageContent.DETAIL.HIGH, ImagePromptMessageContent.DETAIL.LOW]
|
||||
)
|
||||
fake_remote_url = faker.url()
|
||||
|
||||
result = llm_node._fetch_files(selector=["sys", "files"])
|
||||
assert result == []
|
||||
# Setup mock memory with history messages
|
||||
mock_history = [
|
||||
UserPromptMessage(content=faker.sentence()),
|
||||
AssistantPromptMessage(content=faker.sentence()),
|
||||
UserPromptMessage(content=faker.sentence()),
|
||||
AssistantPromptMessage(content=faker.sentence()),
|
||||
UserPromptMessage(content=faker.sentence()),
|
||||
AssistantPromptMessage(content=faker.sentence()),
|
||||
]
|
||||
|
||||
def test_fetch_files_with_non_existent_variable(self, llm_node):
|
||||
result = llm_node._fetch_files(selector=["sys", "files"])
|
||||
assert result == []
|
||||
# Setup memory configuration
|
||||
memory_config = MemoryConfig(
|
||||
role_prefix=MemoryConfig.RolePrefix(user="Human", assistant="Assistant"),
|
||||
window=MemoryConfig.WindowConfig(enabled=True, size=fake_window_size),
|
||||
query_prompt_template=None,
|
||||
)
|
||||
|
||||
memory = MockTokenBufferMemory(history_messages=mock_history)
|
||||
|
||||
# Test scenarios covering different file input combinations
|
||||
test_scenarios = [
|
||||
LLMNodeTestScenario(
|
||||
description="No files",
|
||||
user_query=fake_query,
|
||||
user_files=[],
|
||||
features=[],
|
||||
vision_enabled=False,
|
||||
vision_detail=None,
|
||||
window_size=fake_window_size,
|
||||
prompt_template=[
|
||||
LLMNodeChatModelMessage(
|
||||
text=fake_context,
|
||||
role=PromptMessageRole.SYSTEM,
|
||||
edition_type="basic",
|
||||
),
|
||||
LLMNodeChatModelMessage(
|
||||
text="{#context#}",
|
||||
role=PromptMessageRole.USER,
|
||||
edition_type="basic",
|
||||
),
|
||||
LLMNodeChatModelMessage(
|
||||
text=fake_assistant_prompt,
|
||||
role=PromptMessageRole.ASSISTANT,
|
||||
edition_type="basic",
|
||||
),
|
||||
],
|
||||
expected_messages=[
|
||||
SystemPromptMessage(content=fake_context),
|
||||
UserPromptMessage(content=fake_context),
|
||||
AssistantPromptMessage(content=fake_assistant_prompt),
|
||||
]
|
||||
+ mock_history[fake_window_size * -2 :]
|
||||
+ [
|
||||
UserPromptMessage(content=fake_query),
|
||||
],
|
||||
),
|
||||
LLMNodeTestScenario(
|
||||
description="User files",
|
||||
user_query=fake_query,
|
||||
user_files=[
|
||||
File(
|
||||
tenant_id="test",
|
||||
type=FileType.IMAGE,
|
||||
filename="test1.jpg",
|
||||
transfer_method=FileTransferMethod.REMOTE_URL,
|
||||
remote_url=fake_remote_url,
|
||||
)
|
||||
],
|
||||
vision_enabled=True,
|
||||
vision_detail=fake_vision_detail,
|
||||
features=[ModelFeature.VISION],
|
||||
window_size=fake_window_size,
|
||||
prompt_template=[
|
||||
LLMNodeChatModelMessage(
|
||||
text=fake_context,
|
||||
role=PromptMessageRole.SYSTEM,
|
||||
edition_type="basic",
|
||||
),
|
||||
LLMNodeChatModelMessage(
|
||||
text="{#context#}",
|
||||
role=PromptMessageRole.USER,
|
||||
edition_type="basic",
|
||||
),
|
||||
LLMNodeChatModelMessage(
|
||||
text=fake_assistant_prompt,
|
||||
role=PromptMessageRole.ASSISTANT,
|
||||
edition_type="basic",
|
||||
),
|
||||
],
|
||||
expected_messages=[
|
||||
SystemPromptMessage(content=fake_context),
|
||||
UserPromptMessage(content=fake_context),
|
||||
AssistantPromptMessage(content=fake_assistant_prompt),
|
||||
]
|
||||
+ mock_history[fake_window_size * -2 :]
|
||||
+ [
|
||||
UserPromptMessage(
|
||||
content=[
|
||||
TextPromptMessageContent(data=fake_query),
|
||||
ImagePromptMessageContent(data=fake_remote_url, detail=fake_vision_detail),
|
||||
]
|
||||
),
|
||||
],
|
||||
),
|
||||
LLMNodeTestScenario(
|
||||
description="Prompt template with variable selector of File",
|
||||
user_query=fake_query,
|
||||
user_files=[],
|
||||
vision_enabled=False,
|
||||
vision_detail=fake_vision_detail,
|
||||
features=[ModelFeature.VISION],
|
||||
window_size=fake_window_size,
|
||||
prompt_template=[
|
||||
LLMNodeChatModelMessage(
|
||||
text="{{#input.image#}}",
|
||||
role=PromptMessageRole.USER,
|
||||
edition_type="basic",
|
||||
),
|
||||
],
|
||||
expected_messages=[
|
||||
UserPromptMessage(
|
||||
content=[
|
||||
ImagePromptMessageContent(data=fake_remote_url, detail=fake_vision_detail),
|
||||
]
|
||||
),
|
||||
]
|
||||
+ mock_history[fake_window_size * -2 :]
|
||||
+ [UserPromptMessage(content=fake_query)],
|
||||
file_variables={
|
||||
"input.image": File(
|
||||
tenant_id="test",
|
||||
type=FileType.IMAGE,
|
||||
filename="test1.jpg",
|
||||
transfer_method=FileTransferMethod.REMOTE_URL,
|
||||
remote_url=fake_remote_url,
|
||||
)
|
||||
},
|
||||
),
|
||||
LLMNodeTestScenario(
|
||||
description="Prompt template with variable selector of File without vision feature",
|
||||
user_query=fake_query,
|
||||
user_files=[],
|
||||
vision_enabled=True,
|
||||
vision_detail=fake_vision_detail,
|
||||
features=[],
|
||||
window_size=fake_window_size,
|
||||
prompt_template=[
|
||||
LLMNodeChatModelMessage(
|
||||
text="{{#input.image#}}",
|
||||
role=PromptMessageRole.USER,
|
||||
edition_type="basic",
|
||||
),
|
||||
],
|
||||
expected_messages=mock_history[fake_window_size * -2 :] + [UserPromptMessage(content=fake_query)],
|
||||
file_variables={
|
||||
"input.image": File(
|
||||
tenant_id="test",
|
||||
type=FileType.IMAGE,
|
||||
filename="test1.jpg",
|
||||
transfer_method=FileTransferMethod.REMOTE_URL,
|
||||
remote_url=fake_remote_url,
|
||||
)
|
||||
},
|
||||
),
|
||||
LLMNodeTestScenario(
|
||||
description="Prompt template with variable selector of File with video file and vision feature",
|
||||
user_query=fake_query,
|
||||
user_files=[],
|
||||
vision_enabled=True,
|
||||
vision_detail=fake_vision_detail,
|
||||
features=[ModelFeature.VISION],
|
||||
window_size=fake_window_size,
|
||||
prompt_template=[
|
||||
LLMNodeChatModelMessage(
|
||||
text="{{#input.image#}}",
|
||||
role=PromptMessageRole.USER,
|
||||
edition_type="basic",
|
||||
),
|
||||
],
|
||||
expected_messages=mock_history[fake_window_size * -2 :] + [UserPromptMessage(content=fake_query)],
|
||||
file_variables={
|
||||
"input.image": File(
|
||||
tenant_id="test",
|
||||
type=FileType.VIDEO,
|
||||
filename="test1.mp4",
|
||||
transfer_method=FileTransferMethod.REMOTE_URL,
|
||||
remote_url=fake_remote_url,
|
||||
extension="mp4",
|
||||
)
|
||||
},
|
||||
),
|
||||
]
|
||||
|
||||
for scenario in test_scenarios:
|
||||
model_config.model_schema.features = scenario.features
|
||||
|
||||
for k, v in scenario.file_variables.items():
|
||||
selector = k.split(".")
|
||||
llm_node.graph_runtime_state.variable_pool.add(selector, v)
|
||||
|
||||
# Call the method under test
|
||||
prompt_messages, _ = llm_node._fetch_prompt_messages(
|
||||
user_query=scenario.user_query,
|
||||
user_files=scenario.user_files,
|
||||
context=fake_context,
|
||||
memory=memory,
|
||||
model_config=model_config,
|
||||
prompt_template=scenario.prompt_template,
|
||||
memory_config=memory_config,
|
||||
vision_enabled=scenario.vision_enabled,
|
||||
vision_detail=scenario.vision_detail,
|
||||
variable_pool=llm_node.graph_runtime_state.variable_pool,
|
||||
jinja2_variables=[],
|
||||
)
|
||||
|
||||
# Verify the result
|
||||
assert len(prompt_messages) == len(scenario.expected_messages), f"Scenario failed: {scenario.description}"
|
||||
assert (
|
||||
prompt_messages == scenario.expected_messages
|
||||
), f"Message content mismatch in scenario: {scenario.description}"
|
||||
|
||||
@@ -0,0 +1,25 @@
|
||||
from collections.abc import Mapping, Sequence
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from core.file import File
|
||||
from core.model_runtime.entities.message_entities import PromptMessage
|
||||
from core.model_runtime.entities.model_entities import ModelFeature
|
||||
from core.workflow.nodes.llm.entities import LLMNodeChatModelMessage
|
||||
|
||||
|
||||
class LLMNodeTestScenario(BaseModel):
|
||||
"""Test scenario for LLM node testing."""
|
||||
|
||||
description: str = Field(..., description="Description of the test scenario")
|
||||
user_query: str = Field(..., description="User query input")
|
||||
user_files: Sequence[File] = Field(default_factory=list, description="List of user files")
|
||||
vision_enabled: bool = Field(default=False, description="Whether vision is enabled")
|
||||
vision_detail: str | None = Field(None, description="Vision detail level if vision is enabled")
|
||||
features: Sequence[ModelFeature] = Field(default_factory=list, description="List of model features")
|
||||
window_size: int = Field(..., description="Window size for memory")
|
||||
prompt_template: Sequence[LLMNodeChatModelMessage] = Field(..., description="Template for prompt messages")
|
||||
file_variables: Mapping[str, File | Sequence[File]] = Field(
|
||||
default_factory=dict, description="List of file variables"
|
||||
)
|
||||
expected_messages: Sequence[PromptMessage] = Field(..., description="Expected messages after processing")
|
||||
Reference in New Issue
Block a user