Remove langchain dataset retrival agent logic (#3311)

This commit is contained in:
Jyong
2024-04-10 20:37:22 +08:00
committed by GitHub
parent 8cefa6b82e
commit b6de97ad53
14 changed files with 341 additions and 966 deletions

View File

@@ -0,0 +1,47 @@
from typing import Union
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
from core.model_manager import ModelInstance
from core.model_runtime.entities.message_entities import PromptMessageTool, SystemPromptMessage, UserPromptMessage
class FunctionCallMultiDatasetRouter:
def invoke(
self,
query: str,
dataset_tools: list[PromptMessageTool],
model_config: ModelConfigWithCredentialsEntity,
model_instance: ModelInstance,
) -> Union[str, None]:
"""Given input, decided what to do.
Returns:
Action specifying what tool to use.
"""
if len(dataset_tools) == 0:
return None
elif len(dataset_tools) == 1:
return dataset_tools[0].name
try:
prompt_messages = [
SystemPromptMessage(content='You are a helpful AI assistant.'),
UserPromptMessage(content=query)
]
result = model_instance.invoke_llm(
prompt_messages=prompt_messages,
tools=dataset_tools,
stream=False,
model_parameters={
'temperature': 0.2,
'top_p': 0.3,
'max_tokens': 1500
}
)
if result.message.tool_calls:
# get retrieval model config
return result.message.tool_calls[0].function.name
return None
except Exception as e:
return None

View File

@@ -0,0 +1,254 @@
from collections.abc import Generator, Sequence
from typing import Optional, Union
from langchain import PromptTemplate
from langchain.agents.structured_chat.base import HUMAN_MESSAGE_TEMPLATE
from langchain.agents.structured_chat.prompt import PREFIX, SUFFIX
from langchain.schema import AgentAction
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
from core.model_manager import ModelInstance
from core.model_runtime.entities.llm_entities import LLMUsage
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageRole, PromptMessageTool
from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
from core.prompt.entities.advanced_prompt_entities import ChatModelMessage
from core.rag.retrieval.output_parser.structured_chat import StructuredChatOutputParser
from core.workflow.nodes.llm.llm_node import LLMNode
FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
The nouns in the format of "Thought", "Action", "Action Input", "Final Answer" must be expressed in English.
Valid "action" values: "Final Answer" or {tool_names}
Provide only ONE action per $JSON_BLOB, as shown:
```
{{
"action": $TOOL_NAME,
"action_input": $INPUT
}}
```
Follow this format:
Question: input question to answer
Thought: consider previous and subsequent steps
Action:
```
$JSON_BLOB
```
Observation: action result
... (repeat Thought/Action/Observation N times)
Thought: I know what to respond
Action:
```
{{
"action": "Final Answer",
"action_input": "Final response to human"
}}
```"""
class ReactMultiDatasetRouter:
def invoke(
self,
query: str,
dataset_tools: list[PromptMessageTool],
model_config: ModelConfigWithCredentialsEntity,
model_instance: ModelInstance,
user_id: str,
tenant_id: str
) -> Union[str, None]:
"""Given input, decided what to do.
Returns:
Action specifying what tool to use.
"""
if len(dataset_tools) == 0:
return None
elif len(dataset_tools) == 1:
return dataset_tools[0].name
try:
return self._react_invoke(query=query, model_config=model_config,
model_instance=model_instance,
tools=dataset_tools, user_id=user_id, tenant_id=tenant_id)
except Exception as e:
return None
def _react_invoke(
self,
query: str,
model_config: ModelConfigWithCredentialsEntity,
model_instance: ModelInstance,
tools: Sequence[PromptMessageTool],
user_id: str,
tenant_id: str,
prefix: str = PREFIX,
suffix: str = SUFFIX,
human_message_template: str = HUMAN_MESSAGE_TEMPLATE,
format_instructions: str = FORMAT_INSTRUCTIONS,
) -> Union[str, None]:
if model_config.mode == "chat":
prompt = self.create_chat_prompt(
query=query,
tools=tools,
prefix=prefix,
suffix=suffix,
human_message_template=human_message_template,
format_instructions=format_instructions,
)
else:
prompt = self.create_completion_prompt(
tools=tools,
prefix=prefix,
format_instructions=format_instructions,
input_variables=None
)
stop = ['Observation:']
# handle invoke result
prompt_transform = AdvancedPromptTransform()
prompt_messages = prompt_transform.get_prompt(
prompt_template=prompt,
inputs={},
query='',
files=[],
context='',
memory_config=None,
memory=None,
model_config=model_config
)
result_text, usage = self._invoke_llm(
completion_param=model_config.parameters,
model_instance=model_instance,
prompt_messages=prompt_messages,
stop=stop,
user_id=user_id,
tenant_id=tenant_id
)
output_parser = StructuredChatOutputParser()
agent_decision = output_parser.parse(result_text)
if isinstance(agent_decision, AgentAction):
return agent_decision.tool
return None
def _invoke_llm(self, completion_param: dict,
model_instance: ModelInstance,
prompt_messages: list[PromptMessage],
stop: list[str], user_id: str, tenant_id: str
) -> tuple[str, LLMUsage]:
"""
Invoke large language model
:param node_data: node data
:param model_instance: model instance
:param prompt_messages: prompt messages
:param stop: stop
:return:
"""
invoke_result = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=completion_param,
stop=stop,
stream=True,
user=user_id,
)
# handle invoke result
text, usage = self._handle_invoke_result(
invoke_result=invoke_result
)
# deduct quota
LLMNode.deduct_llm_quota(tenant_id=tenant_id, model_instance=model_instance, usage=usage)
return text, usage
def _handle_invoke_result(self, invoke_result: Generator) -> tuple[str, LLMUsage]:
"""
Handle invoke result
:param invoke_result: invoke result
:return:
"""
model = None
prompt_messages = []
full_text = ''
usage = None
for result in invoke_result:
text = result.delta.message.content
full_text += text
if not model:
model = result.model
if not prompt_messages:
prompt_messages = result.prompt_messages
if not usage and result.delta.usage:
usage = result.delta.usage
if not usage:
usage = LLMUsage.empty_usage()
return full_text, usage
def create_chat_prompt(
self,
query: str,
tools: Sequence[PromptMessageTool],
prefix: str = PREFIX,
suffix: str = SUFFIX,
human_message_template: str = HUMAN_MESSAGE_TEMPLATE,
format_instructions: str = FORMAT_INSTRUCTIONS,
) -> list[ChatModelMessage]:
tool_strings = []
for tool in tools:
tool_strings.append(
f"{tool.name}: {tool.description}, args: {{'query': {{'title': 'Query', 'description': 'Query for the dataset to be used to retrieve the dataset.', 'type': 'string'}}}}")
formatted_tools = "\n".join(tool_strings)
unique_tool_names = set(tool.name for tool in tools)
tool_names = ", ".join('"' + name + '"' for name in unique_tool_names)
format_instructions = format_instructions.format(tool_names=tool_names)
template = "\n\n".join([prefix, formatted_tools, format_instructions, suffix])
prompt_messages = []
system_prompt_messages = ChatModelMessage(
role=PromptMessageRole.SYSTEM,
text=template
)
prompt_messages.append(system_prompt_messages)
user_prompt_message = ChatModelMessage(
role=PromptMessageRole.USER,
text=query
)
prompt_messages.append(user_prompt_message)
return prompt_messages
def create_completion_prompt(
self,
tools: Sequence[PromptMessageTool],
prefix: str = PREFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[list[str]] = None,
) -> PromptTemplate:
"""Create prompt in the style of the zero shot agent.
Args:
tools: List of tools the agent will have access to, used to format the
prompt.
prefix: String to put before the list of tools.
input_variables: List of input variables the final prompt will expect.
Returns:
A PromptTemplate with the template assembled from the pieces here.
"""
suffix = """Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.
Question: {input}
Thought: {agent_scratchpad}
"""
tool_strings = "\n".join([f"{tool.name}: {tool.description}" for tool in tools])
tool_names = ", ".join([tool.name for tool in tools])
format_instructions = format_instructions.format(tool_names=tool_names)
template = "\n\n".join([prefix, tool_strings, format_instructions, suffix])
if input_variables is None:
input_variables = ["input", "agent_scratchpad"]
return PromptTemplate(template=template, input_variables=input_variables)