mirror of
http://112.124.100.131/huang.ze/ebiz-dify-ai.git
synced 2025-12-09 19:06:51 +08:00
Remove langchain dataset retrival agent logic (#3311)
This commit is contained in:
@@ -1,23 +1,40 @@
|
||||
import threading
|
||||
from typing import Optional, cast
|
||||
|
||||
from langchain.tools import BaseTool
|
||||
from flask import Flask, current_app
|
||||
|
||||
from core.app.app_config.entities import DatasetEntity, DatasetRetrieveConfigEntity
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
|
||||
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
||||
from core.entities.agent_entities import PlanningStrategy
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_runtime.entities.model_entities import ModelFeature
|
||||
from core.model_manager import ModelInstance, ModelManager
|
||||
from core.model_runtime.entities.message_entities import PromptMessageTool
|
||||
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.rag.retrieval.agent_based_dataset_executor import AgentConfiguration, AgentExecutor
|
||||
from core.tools.tool.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
|
||||
from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
|
||||
from core.rag.datasource.retrieval_service import RetrievalService
|
||||
from core.rag.models.document import Document
|
||||
from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
|
||||
from core.rag.retrieval.router.multi_dataset_react_route import ReactMultiDatasetRouter
|
||||
from core.rerank.rerank import RerankRunner
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import Dataset
|
||||
from models.dataset import Dataset, DatasetQuery, DocumentSegment
|
||||
from models.dataset import Document as DatasetDocument
|
||||
|
||||
default_retrieval_model = {
|
||||
'search_method': 'semantic_search',
|
||||
'reranking_enable': False,
|
||||
'reranking_model': {
|
||||
'reranking_provider_name': '',
|
||||
'reranking_model_name': ''
|
||||
},
|
||||
'top_k': 2,
|
||||
'score_threshold_enabled': False
|
||||
}
|
||||
|
||||
|
||||
class DatasetRetrieval:
|
||||
def retrieve(self, tenant_id: str,
|
||||
def retrieve(self, app_id: str, user_id: str, tenant_id: str,
|
||||
model_config: ModelConfigWithCredentialsEntity,
|
||||
config: DatasetEntity,
|
||||
query: str,
|
||||
@@ -27,6 +44,8 @@ class DatasetRetrieval:
|
||||
memory: Optional[TokenBufferMemory] = None) -> Optional[str]:
|
||||
"""
|
||||
Retrieve dataset.
|
||||
:param app_id: app_id
|
||||
:param user_id: user_id
|
||||
:param tenant_id: tenant id
|
||||
:param model_config: model config
|
||||
:param config: dataset config
|
||||
@@ -38,12 +57,22 @@ class DatasetRetrieval:
|
||||
:return:
|
||||
"""
|
||||
dataset_ids = config.dataset_ids
|
||||
if len(dataset_ids) == 0:
|
||||
return None
|
||||
retrieve_config = config.retrieve_config
|
||||
|
||||
# check model is support tool calling
|
||||
model_type_instance = model_config.provider_model_bundle.model_type_instance
|
||||
model_type_instance = cast(LargeLanguageModel, model_type_instance)
|
||||
|
||||
model_manager = ModelManager()
|
||||
model_instance = model_manager.get_model_instance(
|
||||
tenant_id=tenant_id,
|
||||
model_type=ModelType.LLM,
|
||||
provider=model_config.provider,
|
||||
model=model_config.model
|
||||
)
|
||||
|
||||
# get model schema
|
||||
model_schema = model_type_instance.get_model_schema(
|
||||
model=model_config.model,
|
||||
@@ -59,56 +88,6 @@ class DatasetRetrieval:
|
||||
if ModelFeature.TOOL_CALL in features \
|
||||
or ModelFeature.MULTI_TOOL_CALL in features:
|
||||
planning_strategy = PlanningStrategy.ROUTER
|
||||
|
||||
dataset_retriever_tools = self.to_dataset_retriever_tool(
|
||||
tenant_id=tenant_id,
|
||||
dataset_ids=dataset_ids,
|
||||
retrieve_config=retrieve_config,
|
||||
return_resource=show_retrieve_source,
|
||||
invoke_from=invoke_from,
|
||||
hit_callback=hit_callback
|
||||
)
|
||||
|
||||
if len(dataset_retriever_tools) == 0:
|
||||
return None
|
||||
|
||||
agent_configuration = AgentConfiguration(
|
||||
strategy=planning_strategy,
|
||||
model_config=model_config,
|
||||
tools=dataset_retriever_tools,
|
||||
memory=memory,
|
||||
max_iterations=10,
|
||||
max_execution_time=400.0,
|
||||
early_stopping_method="generate"
|
||||
)
|
||||
|
||||
agent_executor = AgentExecutor(agent_configuration)
|
||||
|
||||
should_use_agent = agent_executor.should_use_agent(query)
|
||||
if not should_use_agent:
|
||||
return None
|
||||
|
||||
result = agent_executor.run(query)
|
||||
|
||||
return result.output
|
||||
|
||||
def to_dataset_retriever_tool(self, tenant_id: str,
|
||||
dataset_ids: list[str],
|
||||
retrieve_config: DatasetRetrieveConfigEntity,
|
||||
return_resource: bool,
|
||||
invoke_from: InvokeFrom,
|
||||
hit_callback: DatasetIndexToolCallbackHandler) \
|
||||
-> Optional[list[BaseTool]]:
|
||||
"""
|
||||
A dataset tool is a tool that can be used to retrieve information from a dataset
|
||||
:param tenant_id: tenant id
|
||||
:param dataset_ids: dataset ids
|
||||
:param retrieve_config: retrieve config
|
||||
:param return_resource: return resource
|
||||
:param invoke_from: invoke from
|
||||
:param hit_callback: hit callback
|
||||
"""
|
||||
tools = []
|
||||
available_datasets = []
|
||||
for dataset_id in dataset_ids:
|
||||
# get dataset from dataset id
|
||||
@@ -127,56 +106,270 @@ class DatasetRetrieval:
|
||||
continue
|
||||
|
||||
available_datasets.append(dataset)
|
||||
|
||||
all_documents = []
|
||||
user_from = 'account' if invoke_from in [InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER] else 'end_user'
|
||||
if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
|
||||
# get retrieval model config
|
||||
default_retrieval_model = {
|
||||
'search_method': 'semantic_search',
|
||||
'reranking_enable': False,
|
||||
'reranking_model': {
|
||||
'reranking_provider_name': '',
|
||||
'reranking_model_name': ''
|
||||
},
|
||||
'top_k': 2,
|
||||
'score_threshold_enabled': False
|
||||
}
|
||||
all_documents = self.single_retrieve(app_id, tenant_id, user_id, user_from, available_datasets, query,
|
||||
model_instance,
|
||||
model_config, planning_strategy)
|
||||
elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
|
||||
all_documents = self.multiple_retrieve(app_id, tenant_id, user_id, user_from,
|
||||
available_datasets, query, retrieve_config.top_k,
|
||||
retrieve_config.score_threshold,
|
||||
retrieve_config.reranking_model.get('reranking_provider_name'),
|
||||
retrieve_config.reranking_model.get('reranking_model_name'))
|
||||
|
||||
for dataset in available_datasets:
|
||||
document_score_list = {}
|
||||
for item in all_documents:
|
||||
if 'score' in item.metadata and item.metadata['score']:
|
||||
document_score_list[item.metadata['doc_id']] = item.metadata['score']
|
||||
|
||||
document_context_list = []
|
||||
index_node_ids = [document.metadata['doc_id'] for document in all_documents]
|
||||
segments = DocumentSegment.query.filter(
|
||||
DocumentSegment.dataset_id.in_(dataset_ids),
|
||||
DocumentSegment.completed_at.isnot(None),
|
||||
DocumentSegment.status == 'completed',
|
||||
DocumentSegment.enabled == True,
|
||||
DocumentSegment.index_node_id.in_(index_node_ids)
|
||||
).all()
|
||||
|
||||
if segments:
|
||||
index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
|
||||
sorted_segments = sorted(segments,
|
||||
key=lambda segment: index_node_id_to_position.get(segment.index_node_id,
|
||||
float('inf')))
|
||||
for segment in sorted_segments:
|
||||
if segment.answer:
|
||||
document_context_list.append(f'question:{segment.content} answer:{segment.answer}')
|
||||
else:
|
||||
document_context_list.append(segment.content)
|
||||
if show_retrieve_source:
|
||||
context_list = []
|
||||
resource_number = 1
|
||||
for segment in sorted_segments:
|
||||
dataset = Dataset.query.filter_by(
|
||||
id=segment.dataset_id
|
||||
).first()
|
||||
document = DatasetDocument.query.filter(DatasetDocument.id == segment.document_id,
|
||||
DatasetDocument.enabled == True,
|
||||
DatasetDocument.archived == False,
|
||||
).first()
|
||||
if dataset and document:
|
||||
source = {
|
||||
'position': resource_number,
|
||||
'dataset_id': dataset.id,
|
||||
'dataset_name': dataset.name,
|
||||
'document_id': document.id,
|
||||
'document_name': document.name,
|
||||
'data_source_type': document.data_source_type,
|
||||
'segment_id': segment.id,
|
||||
'retriever_from': invoke_from.to_source(),
|
||||
'score': document_score_list.get(segment.index_node_id, None)
|
||||
}
|
||||
|
||||
if invoke_from.to_source() == 'dev':
|
||||
source['hit_count'] = segment.hit_count
|
||||
source['word_count'] = segment.word_count
|
||||
source['segment_position'] = segment.position
|
||||
source['index_node_hash'] = segment.index_node_hash
|
||||
if segment.answer:
|
||||
source['content'] = f'question:{segment.content} \nanswer:{segment.answer}'
|
||||
else:
|
||||
source['content'] = segment.content
|
||||
context_list.append(source)
|
||||
resource_number += 1
|
||||
if hit_callback:
|
||||
hit_callback.return_retriever_resource_info(context_list)
|
||||
|
||||
return str("\n".join(document_context_list))
|
||||
return ''
|
||||
|
||||
def single_retrieve(self, app_id: str,
|
||||
tenant_id: str,
|
||||
user_id: str,
|
||||
user_from: str,
|
||||
available_datasets: list,
|
||||
query: str,
|
||||
model_instance: ModelInstance,
|
||||
model_config: ModelConfigWithCredentialsEntity,
|
||||
planning_strategy: PlanningStrategy,
|
||||
):
|
||||
tools = []
|
||||
for dataset in available_datasets:
|
||||
description = dataset.description
|
||||
if not description:
|
||||
description = 'useful for when you want to answer queries about the ' + dataset.name
|
||||
|
||||
description = description.replace('\n', '').replace('\r', '')
|
||||
message_tool = PromptMessageTool(
|
||||
name=dataset.id,
|
||||
description=description,
|
||||
parameters={
|
||||
"type": "object",
|
||||
"properties": {},
|
||||
"required": [],
|
||||
}
|
||||
)
|
||||
tools.append(message_tool)
|
||||
dataset_id = None
|
||||
if planning_strategy == PlanningStrategy.REACT_ROUTER:
|
||||
react_multi_dataset_router = ReactMultiDatasetRouter()
|
||||
dataset_id = react_multi_dataset_router.invoke(query, tools, model_config, model_instance,
|
||||
user_id, tenant_id)
|
||||
|
||||
elif planning_strategy == PlanningStrategy.ROUTER:
|
||||
function_call_router = FunctionCallMultiDatasetRouter()
|
||||
dataset_id = function_call_router.invoke(query, tools, model_config, model_instance)
|
||||
|
||||
if dataset_id:
|
||||
# get retrieval model config
|
||||
dataset = db.session.query(Dataset).filter(
|
||||
Dataset.id == dataset_id
|
||||
).first()
|
||||
if dataset:
|
||||
retrieval_model_config = dataset.retrieval_model \
|
||||
if dataset.retrieval_model else default_retrieval_model
|
||||
|
||||
# get top k
|
||||
top_k = retrieval_model_config['top_k']
|
||||
|
||||
# get retrieval method
|
||||
if dataset.indexing_technique == "economy":
|
||||
retrival_method = 'keyword_search'
|
||||
else:
|
||||
retrival_method = retrieval_model_config['search_method']
|
||||
# get reranking model
|
||||
reranking_model = retrieval_model_config['reranking_model'] \
|
||||
if retrieval_model_config['reranking_enable'] else None
|
||||
# get score threshold
|
||||
score_threshold = None
|
||||
score_threshold = .0
|
||||
score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
|
||||
if score_threshold_enabled:
|
||||
score_threshold = retrieval_model_config.get("score_threshold")
|
||||
|
||||
tool = DatasetRetrieverTool.from_dataset(
|
||||
dataset=dataset,
|
||||
top_k=top_k,
|
||||
score_threshold=score_threshold,
|
||||
hit_callbacks=[hit_callback],
|
||||
return_resource=return_resource,
|
||||
retriever_from=invoke_from.to_source()
|
||||
)
|
||||
results = RetrievalService.retrieve(retrival_method=retrival_method, dataset_id=dataset.id,
|
||||
query=query,
|
||||
top_k=top_k, score_threshold=score_threshold,
|
||||
reranking_model=reranking_model)
|
||||
self._on_query(query, [dataset_id], app_id, user_from, user_id)
|
||||
if results:
|
||||
self._on_retrival_end(results)
|
||||
return results
|
||||
return []
|
||||
|
||||
tools.append(tool)
|
||||
elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
|
||||
tool = DatasetMultiRetrieverTool.from_dataset(
|
||||
dataset_ids=[dataset.id for dataset in available_datasets],
|
||||
tenant_id=tenant_id,
|
||||
top_k=retrieve_config.top_k or 2,
|
||||
score_threshold=retrieve_config.score_threshold,
|
||||
hit_callbacks=[hit_callback],
|
||||
return_resource=return_resource,
|
||||
retriever_from=invoke_from.to_source(),
|
||||
reranking_provider_name=retrieve_config.reranking_model.get('reranking_provider_name'),
|
||||
reranking_model_name=retrieve_config.reranking_model.get('reranking_model_name')
|
||||
def multiple_retrieve(self,
|
||||
app_id: str,
|
||||
tenant_id: str,
|
||||
user_id: str,
|
||||
user_from: str,
|
||||
available_datasets: list,
|
||||
query: str,
|
||||
top_k: int,
|
||||
score_threshold: float,
|
||||
reranking_provider_name: str,
|
||||
reranking_model_name: str):
|
||||
threads = []
|
||||
all_documents = []
|
||||
dataset_ids = [dataset.id for dataset in available_datasets]
|
||||
for dataset in available_datasets:
|
||||
retrieval_thread = threading.Thread(target=self._retriever, kwargs={
|
||||
'flask_app': current_app._get_current_object(),
|
||||
'dataset_id': dataset.id,
|
||||
'query': query,
|
||||
'top_k': top_k,
|
||||
'all_documents': all_documents,
|
||||
})
|
||||
threads.append(retrieval_thread)
|
||||
retrieval_thread.start()
|
||||
for thread in threads:
|
||||
thread.join()
|
||||
# do rerank for searched documents
|
||||
model_manager = ModelManager()
|
||||
rerank_model_instance = model_manager.get_model_instance(
|
||||
tenant_id=tenant_id,
|
||||
provider=reranking_provider_name,
|
||||
model_type=ModelType.RERANK,
|
||||
model=reranking_model_name
|
||||
)
|
||||
|
||||
rerank_runner = RerankRunner(rerank_model_instance)
|
||||
all_documents = rerank_runner.run(query, all_documents,
|
||||
score_threshold,
|
||||
top_k)
|
||||
self._on_query(query, dataset_ids, app_id, user_from, user_id)
|
||||
if all_documents:
|
||||
self._on_retrival_end(all_documents)
|
||||
return all_documents
|
||||
|
||||
def _on_retrival_end(self, documents: list[Document]) -> None:
|
||||
"""Handle retrival end."""
|
||||
for document in documents:
|
||||
query = db.session.query(DocumentSegment).filter(
|
||||
DocumentSegment.index_node_id == document.metadata['doc_id']
|
||||
)
|
||||
|
||||
tools.append(tool)
|
||||
# if 'dataset_id' in document.metadata:
|
||||
if 'dataset_id' in document.metadata:
|
||||
query = query.filter(DocumentSegment.dataset_id == document.metadata['dataset_id'])
|
||||
|
||||
return tools
|
||||
# add hit count to document segment
|
||||
query.update(
|
||||
{DocumentSegment.hit_count: DocumentSegment.hit_count + 1},
|
||||
synchronize_session=False
|
||||
)
|
||||
|
||||
db.session.commit()
|
||||
|
||||
def _on_query(self, query: str, dataset_ids: list[str], app_id: str, user_from: str, user_id: str) -> None:
|
||||
"""
|
||||
Handle query.
|
||||
"""
|
||||
if not query:
|
||||
return
|
||||
for dataset_id in dataset_ids:
|
||||
dataset_query = DatasetQuery(
|
||||
dataset_id=dataset_id,
|
||||
content=query,
|
||||
source='app',
|
||||
source_app_id=app_id,
|
||||
created_by_role=user_from,
|
||||
created_by=user_id
|
||||
)
|
||||
db.session.add(dataset_query)
|
||||
db.session.commit()
|
||||
|
||||
def _retriever(self, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list):
|
||||
with flask_app.app_context():
|
||||
dataset = db.session.query(Dataset).filter(
|
||||
Dataset.id == dataset_id
|
||||
).first()
|
||||
|
||||
if not dataset:
|
||||
return []
|
||||
|
||||
# get retrieval model , if the model is not setting , using default
|
||||
retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
|
||||
|
||||
if dataset.indexing_technique == "economy":
|
||||
# use keyword table query
|
||||
documents = RetrievalService.retrieve(retrival_method='keyword_search',
|
||||
dataset_id=dataset.id,
|
||||
query=query,
|
||||
top_k=top_k
|
||||
)
|
||||
if documents:
|
||||
all_documents.extend(documents)
|
||||
else:
|
||||
if top_k > 0:
|
||||
# retrieval source
|
||||
documents = RetrievalService.retrieve(retrival_method=retrieval_model['search_method'],
|
||||
dataset_id=dataset.id,
|
||||
query=query,
|
||||
top_k=top_k,
|
||||
score_threshold=retrieval_model['score_threshold']
|
||||
if retrieval_model['score_threshold_enabled'] else None,
|
||||
reranking_model=retrieval_model['reranking_model']
|
||||
if retrieval_model['reranking_enable'] else None
|
||||
)
|
||||
|
||||
all_documents.extend(documents)
|
||||
|
||||
Reference in New Issue
Block a user