mirror of
http://112.124.100.131/huang.ze/ebiz-dify-ai.git
synced 2025-12-15 05:46:52 +08:00
Support knowledge metadata filter (#15982)
This commit is contained in:
@@ -1,8 +1,10 @@
|
||||
from collections.abc import Sequence
|
||||
from typing import Any, Literal, Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from core.workflow.nodes.base import BaseNodeData
|
||||
from core.workflow.nodes.llm.entities import VisionConfig
|
||||
|
||||
|
||||
class RerankingModelConfig(BaseModel):
|
||||
@@ -73,6 +75,48 @@ class SingleRetrievalConfig(BaseModel):
|
||||
model: ModelConfig
|
||||
|
||||
|
||||
SupportedComparisonOperator = Literal[
|
||||
# for string or array
|
||||
"contains",
|
||||
"not contains",
|
||||
"start with",
|
||||
"end with",
|
||||
"is",
|
||||
"is not",
|
||||
"empty",
|
||||
"not empty",
|
||||
# for number
|
||||
"=",
|
||||
"≠",
|
||||
">",
|
||||
"<",
|
||||
"≥",
|
||||
"≤",
|
||||
# for time
|
||||
"before",
|
||||
"after",
|
||||
]
|
||||
|
||||
|
||||
class Condition(BaseModel):
|
||||
"""
|
||||
Conditon detail
|
||||
"""
|
||||
|
||||
name: str
|
||||
comparison_operator: SupportedComparisonOperator
|
||||
value: str | Sequence[str] | None | int | float = None
|
||||
|
||||
|
||||
class MetadataFilteringCondition(BaseModel):
|
||||
"""
|
||||
Metadata Filtering Condition.
|
||||
"""
|
||||
|
||||
logical_operator: Optional[Literal["and", "or"]] = "and"
|
||||
conditions: Optional[list[Condition]] = Field(default=None, deprecated=True)
|
||||
|
||||
|
||||
class KnowledgeRetrievalNodeData(BaseNodeData):
|
||||
"""
|
||||
Knowledge retrieval Node Data.
|
||||
@@ -84,3 +128,7 @@ class KnowledgeRetrievalNodeData(BaseNodeData):
|
||||
retrieval_mode: Literal["single", "multiple"]
|
||||
multiple_retrieval_config: Optional[MultipleRetrievalConfig] = None
|
||||
single_retrieval_config: Optional[SingleRetrievalConfig] = None
|
||||
metadata_filtering_mode: Optional[Literal["disabled", "automatic", "manual"]] = "disabled"
|
||||
metadata_model_config: Optional[ModelConfig] = None
|
||||
metadata_filtering_conditions: Optional[MetadataFilteringCondition] = None
|
||||
vision: VisionConfig = Field(default_factory=VisionConfig)
|
||||
|
||||
@@ -16,3 +16,7 @@ class ModelNotSupportedError(KnowledgeRetrievalNodeError):
|
||||
|
||||
class ModelQuotaExceededError(KnowledgeRetrievalNodeError):
|
||||
"""Raised when the model provider quota is exceeded."""
|
||||
|
||||
|
||||
class InvalidModelTypeError(KnowledgeRetrievalNodeError):
|
||||
"""Raised when the model is not a Large Language Model."""
|
||||
|
||||
@@ -1,32 +1,51 @@
|
||||
import json
|
||||
import logging
|
||||
import time
|
||||
from collections import defaultdict
|
||||
from collections.abc import Mapping, Sequence
|
||||
from typing import Any, cast
|
||||
from typing import Any, Optional, cast
|
||||
|
||||
from sqlalchemy import func
|
||||
from sqlalchemy import Integer, and_, func, or_, text
|
||||
from sqlalchemy import cast as sqlalchemy_cast
|
||||
|
||||
from core.app.app_config.entities import DatasetRetrieveConfigEntity
|
||||
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
|
||||
from core.entities.agent_entities import PlanningStrategy
|
||||
from core.entities.model_entities import ModelStatus
|
||||
from core.model_manager import ModelInstance, ModelManager
|
||||
from core.model_runtime.entities.message_entities import PromptMessageRole
|
||||
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.prompt.simple_prompt_transform import ModelMode
|
||||
from core.rag.datasource.retrieval_service import RetrievalService
|
||||
from core.rag.entities.metadata_entities import Condition, MetadataCondition
|
||||
from core.rag.retrieval.dataset_retrieval import DatasetRetrieval
|
||||
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||
from core.variables import StringSegment
|
||||
from core.workflow.entities.node_entities import NodeRunResult
|
||||
from core.workflow.nodes.base import BaseNode
|
||||
from core.workflow.nodes.enums import NodeType
|
||||
from core.workflow.nodes.event.event import ModelInvokeCompletedEvent
|
||||
from core.workflow.nodes.knowledge_retrieval.template_prompts import (
|
||||
METADATA_FILTER_ASSISTANT_PROMPT_1,
|
||||
METADATA_FILTER_ASSISTANT_PROMPT_2,
|
||||
METADATA_FILTER_COMPLETION_PROMPT,
|
||||
METADATA_FILTER_SYSTEM_PROMPT,
|
||||
METADATA_FILTER_USER_PROMPT_1,
|
||||
METADATA_FILTER_USER_PROMPT_3,
|
||||
)
|
||||
from core.workflow.nodes.llm.entities import LLMNodeChatModelMessage, LLMNodeCompletionModelPromptTemplate
|
||||
from core.workflow.nodes.llm.node import LLMNode
|
||||
from core.workflow.nodes.question_classifier.template_prompts import QUESTION_CLASSIFIER_USER_PROMPT_2
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset, Document, RateLimitLog
|
||||
from libs.json_in_md_parser import parse_and_check_json_markdown
|
||||
from models.dataset import Dataset, DatasetMetadata, Document, RateLimitLog
|
||||
from models.workflow import WorkflowNodeExecutionStatus
|
||||
from services.feature_service import FeatureService
|
||||
|
||||
from .entities import KnowledgeRetrievalNodeData
|
||||
from .entities import KnowledgeRetrievalNodeData, ModelConfig
|
||||
from .exc import (
|
||||
InvalidModelTypeError,
|
||||
KnowledgeRetrievalNodeError,
|
||||
ModelCredentialsNotInitializedError,
|
||||
ModelNotExistError,
|
||||
@@ -45,13 +64,14 @@ default_retrieval_model = {
|
||||
}
|
||||
|
||||
|
||||
class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
|
||||
_node_data_cls = KnowledgeRetrievalNodeData
|
||||
class KnowledgeRetrievalNode(LLMNode):
|
||||
_node_data_cls = KnowledgeRetrievalNodeData # type: ignore
|
||||
_node_type = NodeType.KNOWLEDGE_RETRIEVAL
|
||||
|
||||
def _run(self) -> NodeRunResult:
|
||||
def _run(self) -> NodeRunResult: # type: ignore
|
||||
node_data = cast(KnowledgeRetrievalNodeData, self.node_data)
|
||||
# extract variables
|
||||
variable = self.graph_runtime_state.variable_pool.get(self.node_data.query_variable_selector)
|
||||
variable = self.graph_runtime_state.variable_pool.get(node_data.query_variable_selector)
|
||||
if not isinstance(variable, StringSegment):
|
||||
return NodeRunResult(
|
||||
status=WorkflowNodeExecutionStatus.FAILED,
|
||||
@@ -91,7 +111,7 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
|
||||
|
||||
# retrieve knowledge
|
||||
try:
|
||||
results = self._fetch_dataset_retriever(node_data=self.node_data, query=query)
|
||||
results = self._fetch_dataset_retriever(node_data=node_data, query=query)
|
||||
outputs = {"result": results}
|
||||
return NodeRunResult(
|
||||
status=WorkflowNodeExecutionStatus.SUCCEEDED, inputs=variables, process_data=None, outputs=outputs
|
||||
@@ -145,11 +165,14 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
|
||||
if not dataset:
|
||||
continue
|
||||
available_datasets.append(dataset)
|
||||
metadata_filter_document_ids, metadata_condition = self._get_metadata_filter_condition(
|
||||
[dataset.id for dataset in available_datasets], query, node_data
|
||||
)
|
||||
all_documents = []
|
||||
dataset_retrieval = DatasetRetrieval()
|
||||
if node_data.retrieval_mode == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE.value:
|
||||
# fetch model config
|
||||
model_instance, model_config = self._fetch_model_config(node_data)
|
||||
model_instance, model_config = self._fetch_model_config(node_data.single_retrieval_config.model) # type: ignore
|
||||
# check model is support tool calling
|
||||
model_type_instance = model_config.provider_model_bundle.model_type_instance
|
||||
model_type_instance = cast(LargeLanguageModel, model_type_instance)
|
||||
@@ -174,6 +197,8 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
|
||||
model_config=model_config,
|
||||
model_instance=model_instance,
|
||||
planning_strategy=planning_strategy,
|
||||
metadata_filter_document_ids=metadata_filter_document_ids,
|
||||
metadata_condition=metadata_condition,
|
||||
)
|
||||
elif node_data.retrieval_mode == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE.value:
|
||||
if node_data.multiple_retrieval_config is None:
|
||||
@@ -220,6 +245,8 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
|
||||
reranking_model=reranking_model,
|
||||
weights=weights,
|
||||
reranking_enable=node_data.multiple_retrieval_config.reranking_enable,
|
||||
metadata_filter_document_ids=metadata_filter_document_ids,
|
||||
metadata_condition=metadata_condition,
|
||||
)
|
||||
dify_documents = [item for item in all_documents if item.provider == "dify"]
|
||||
external_documents = [item for item in all_documents if item.provider == "external"]
|
||||
@@ -287,13 +314,187 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
|
||||
item["metadata"]["position"] = position
|
||||
return retrieval_resource_list
|
||||
|
||||
def _get_metadata_filter_condition(
|
||||
self, dataset_ids: list, query: str, node_data: KnowledgeRetrievalNodeData
|
||||
) -> tuple[Optional[dict[str, list[str]]], Optional[MetadataCondition]]:
|
||||
document_query = db.session.query(Document).filter(
|
||||
Document.dataset_id.in_(dataset_ids),
|
||||
Document.indexing_status == "completed",
|
||||
Document.enabled == True,
|
||||
Document.archived == False,
|
||||
)
|
||||
filters = [] # type: ignore
|
||||
metadata_condition = None
|
||||
if node_data.metadata_filtering_mode == "disabled":
|
||||
return None, None
|
||||
elif node_data.metadata_filtering_mode == "automatic":
|
||||
automatic_metadata_filters = self._automatic_metadata_filter_func(dataset_ids, query, node_data)
|
||||
if automatic_metadata_filters:
|
||||
conditions = []
|
||||
for filter in automatic_metadata_filters:
|
||||
self._process_metadata_filter_func(
|
||||
filter.get("condition", ""),
|
||||
filter.get("metadata_name", ""),
|
||||
filter.get("value"),
|
||||
filters, # type: ignore
|
||||
)
|
||||
conditions.append(
|
||||
Condition(
|
||||
name=filter.get("metadata_name"), # type: ignore
|
||||
comparison_operator=filter.get("condition"), # type: ignore
|
||||
value=filter.get("value"),
|
||||
)
|
||||
)
|
||||
metadata_condition = MetadataCondition(
|
||||
logical_operator=node_data.metadata_filtering_conditions.logical_operator, # type: ignore
|
||||
conditions=conditions,
|
||||
)
|
||||
elif node_data.metadata_filtering_mode == "manual":
|
||||
if node_data.metadata_filtering_conditions:
|
||||
metadata_condition = MetadataCondition(**node_data.metadata_filtering_conditions.model_dump())
|
||||
if node_data.metadata_filtering_conditions:
|
||||
for condition in node_data.metadata_filtering_conditions.conditions: # type: ignore
|
||||
metadata_name = condition.name
|
||||
expected_value = condition.value
|
||||
if expected_value or condition.comparison_operator in ("empty", "not empty"):
|
||||
if isinstance(expected_value, str):
|
||||
expected_value = self.graph_runtime_state.variable_pool.convert_template(
|
||||
expected_value
|
||||
).text
|
||||
|
||||
filters = self._process_metadata_filter_func(
|
||||
condition.comparison_operator, metadata_name, expected_value, filters
|
||||
)
|
||||
else:
|
||||
raise ValueError("Invalid metadata filtering mode")
|
||||
if filters:
|
||||
if node_data.metadata_filtering_conditions.logical_operator == "and": # type: ignore
|
||||
document_query = document_query.filter(and_(*filters))
|
||||
else:
|
||||
document_query = document_query.filter(or_(*filters))
|
||||
documents = document_query.all()
|
||||
# group by dataset_id
|
||||
metadata_filter_document_ids = defaultdict(list) if documents else None # type: ignore
|
||||
for document in documents:
|
||||
metadata_filter_document_ids[document.dataset_id].append(document.id) # type: ignore
|
||||
return metadata_filter_document_ids, metadata_condition
|
||||
|
||||
def _automatic_metadata_filter_func(
|
||||
self, dataset_ids: list, query: str, node_data: KnowledgeRetrievalNodeData
|
||||
) -> list[dict[str, Any]]:
|
||||
# get all metadata field
|
||||
metadata_fields = db.session.query(DatasetMetadata).filter(DatasetMetadata.dataset_id.in_(dataset_ids)).all()
|
||||
all_metadata_fields = [metadata_field.field_name for metadata_field in metadata_fields]
|
||||
# get metadata model config
|
||||
metadata_model_config = node_data.metadata_model_config
|
||||
if metadata_model_config is None:
|
||||
raise ValueError("metadata_model_config is required")
|
||||
# get metadata model instance
|
||||
# fetch model config
|
||||
model_instance, model_config = self._fetch_model_config(node_data.metadata_model_config) # type: ignore
|
||||
# fetch prompt messages
|
||||
prompt_template = self._get_prompt_template(
|
||||
node_data=node_data,
|
||||
metadata_fields=all_metadata_fields,
|
||||
query=query or "",
|
||||
)
|
||||
prompt_messages, stop = self._fetch_prompt_messages(
|
||||
prompt_template=prompt_template,
|
||||
sys_query=query,
|
||||
memory=None,
|
||||
model_config=model_config,
|
||||
sys_files=[],
|
||||
vision_enabled=node_data.vision.enabled,
|
||||
vision_detail=node_data.vision.configs.detail,
|
||||
variable_pool=self.graph_runtime_state.variable_pool,
|
||||
jinja2_variables=[],
|
||||
)
|
||||
|
||||
result_text = ""
|
||||
try:
|
||||
# handle invoke result
|
||||
generator = self._invoke_llm(
|
||||
node_data_model=node_data.metadata_model_config, # type: ignore
|
||||
model_instance=model_instance,
|
||||
prompt_messages=prompt_messages,
|
||||
stop=stop,
|
||||
)
|
||||
|
||||
for event in generator:
|
||||
if isinstance(event, ModelInvokeCompletedEvent):
|
||||
result_text = event.text
|
||||
break
|
||||
|
||||
result_text_json = parse_and_check_json_markdown(result_text, [])
|
||||
automatic_metadata_filters = []
|
||||
if "metadata_map" in result_text_json:
|
||||
metadata_map = result_text_json["metadata_map"]
|
||||
for item in metadata_map:
|
||||
if item.get("metadata_field_name") in all_metadata_fields:
|
||||
automatic_metadata_filters.append(
|
||||
{
|
||||
"metadata_name": item.get("metadata_field_name"),
|
||||
"value": item.get("metadata_field_value"),
|
||||
"condition": item.get("comparison_operator"),
|
||||
}
|
||||
)
|
||||
except Exception as e:
|
||||
return []
|
||||
return automatic_metadata_filters
|
||||
|
||||
def _process_metadata_filter_func(self, condition: str, metadata_name: str, value: Optional[str], filters: list):
|
||||
match condition:
|
||||
case "contains":
|
||||
filters.append(
|
||||
(text("documents.doc_metadata ->> :key LIKE :value")).params(key=metadata_name, value=f"%{value}%")
|
||||
)
|
||||
case "not contains":
|
||||
filters.append(
|
||||
(text("documents.doc_metadata ->> :key NOT LIKE :value")).params(
|
||||
key=metadata_name, value=f"%{value}%"
|
||||
)
|
||||
)
|
||||
case "start with":
|
||||
filters.append(
|
||||
(text("documents.doc_metadata ->> :key LIKE :value")).params(key=metadata_name, value=f"{value}%")
|
||||
)
|
||||
case "end with":
|
||||
filters.append(
|
||||
(text("documents.doc_metadata ->> :key LIKE :value")).params(key=metadata_name, value=f"%{value}")
|
||||
)
|
||||
case "=" | "is":
|
||||
if isinstance(value, str):
|
||||
filters.append(Document.doc_metadata[metadata_name] == f'"{value}"')
|
||||
else:
|
||||
filters.append(sqlalchemy_cast(Document.doc_metadata[metadata_name].astext, Integer) == value)
|
||||
case "is not" | "≠":
|
||||
if isinstance(value, str):
|
||||
filters.append(Document.doc_metadata[metadata_name] != f'"{value}"')
|
||||
else:
|
||||
filters.append(sqlalchemy_cast(Document.doc_metadata[metadata_name].astext, Integer) != value)
|
||||
case "empty":
|
||||
filters.append(Document.doc_metadata[metadata_name].is_(None))
|
||||
case "not empty":
|
||||
filters.append(Document.doc_metadata[metadata_name].isnot(None))
|
||||
case "before" | "<":
|
||||
filters.append(sqlalchemy_cast(Document.doc_metadata[metadata_name].astext, Integer) < value)
|
||||
case "after" | ">":
|
||||
filters.append(sqlalchemy_cast(Document.doc_metadata[metadata_name].astext, Integer) > value)
|
||||
case "≤" | ">=":
|
||||
filters.append(sqlalchemy_cast(Document.doc_metadata[metadata_name].astext, Integer) <= value)
|
||||
case "≥" | ">=":
|
||||
filters.append(sqlalchemy_cast(Document.doc_metadata[metadata_name].astext, Integer) >= value)
|
||||
case _:
|
||||
pass
|
||||
return filters
|
||||
|
||||
@classmethod
|
||||
def _extract_variable_selector_to_variable_mapping(
|
||||
cls,
|
||||
*,
|
||||
graph_config: Mapping[str, Any],
|
||||
node_id: str,
|
||||
node_data: KnowledgeRetrievalNodeData,
|
||||
node_data: KnowledgeRetrievalNodeData, # type: ignore
|
||||
) -> Mapping[str, Sequence[str]]:
|
||||
"""
|
||||
Extract variable selector to variable mapping
|
||||
@@ -306,18 +507,16 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
|
||||
variable_mapping[node_id + ".query"] = node_data.query_variable_selector
|
||||
return variable_mapping
|
||||
|
||||
def _fetch_model_config(
|
||||
self, node_data: KnowledgeRetrievalNodeData
|
||||
) -> tuple[ModelInstance, ModelConfigWithCredentialsEntity]:
|
||||
def _fetch_model_config(self, model: ModelConfig) -> tuple[ModelInstance, ModelConfigWithCredentialsEntity]: # type: ignore
|
||||
"""
|
||||
Fetch model config
|
||||
:param node_data: node data
|
||||
:param model: model
|
||||
:return:
|
||||
"""
|
||||
if node_data.single_retrieval_config is None:
|
||||
raise ValueError("single_retrieval_config is required")
|
||||
model_name = node_data.single_retrieval_config.model.name
|
||||
provider_name = node_data.single_retrieval_config.model.provider
|
||||
if model is None:
|
||||
raise ValueError("model is required")
|
||||
model_name = model.name
|
||||
provider_name = model.provider
|
||||
|
||||
model_manager = ModelManager()
|
||||
model_instance = model_manager.get_model_instance(
|
||||
@@ -346,14 +545,14 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
|
||||
raise ModelQuotaExceededError(f"Model provider {provider_name} quota exceeded.")
|
||||
|
||||
# model config
|
||||
completion_params = node_data.single_retrieval_config.model.completion_params
|
||||
completion_params = model.completion_params
|
||||
stop = []
|
||||
if "stop" in completion_params:
|
||||
stop = completion_params["stop"]
|
||||
del completion_params["stop"]
|
||||
|
||||
# get model mode
|
||||
model_mode = node_data.single_retrieval_config.model.mode
|
||||
model_mode = model.mode
|
||||
if not model_mode:
|
||||
raise ModelNotExistError("LLM mode is required.")
|
||||
|
||||
@@ -372,3 +571,50 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
|
||||
parameters=completion_params,
|
||||
stop=stop,
|
||||
)
|
||||
|
||||
def _get_prompt_template(self, node_data: KnowledgeRetrievalNodeData, metadata_fields: list, query: str):
|
||||
model_mode = ModelMode.value_of(node_data.metadata_model_config.mode) # type: ignore
|
||||
input_text = query
|
||||
memory_str = ""
|
||||
|
||||
prompt_messages: list[LLMNodeChatModelMessage] = []
|
||||
if model_mode == ModelMode.CHAT:
|
||||
system_prompt_messages = LLMNodeChatModelMessage(
|
||||
role=PromptMessageRole.SYSTEM, text=METADATA_FILTER_SYSTEM_PROMPT
|
||||
)
|
||||
prompt_messages.append(system_prompt_messages)
|
||||
user_prompt_message_1 = LLMNodeChatModelMessage(
|
||||
role=PromptMessageRole.USER, text=METADATA_FILTER_USER_PROMPT_1
|
||||
)
|
||||
prompt_messages.append(user_prompt_message_1)
|
||||
assistant_prompt_message_1 = LLMNodeChatModelMessage(
|
||||
role=PromptMessageRole.ASSISTANT, text=METADATA_FILTER_ASSISTANT_PROMPT_1
|
||||
)
|
||||
prompt_messages.append(assistant_prompt_message_1)
|
||||
user_prompt_message_2 = LLMNodeChatModelMessage(
|
||||
role=PromptMessageRole.USER, text=QUESTION_CLASSIFIER_USER_PROMPT_2
|
||||
)
|
||||
prompt_messages.append(user_prompt_message_2)
|
||||
assistant_prompt_message_2 = LLMNodeChatModelMessage(
|
||||
role=PromptMessageRole.ASSISTANT, text=METADATA_FILTER_ASSISTANT_PROMPT_2
|
||||
)
|
||||
prompt_messages.append(assistant_prompt_message_2)
|
||||
user_prompt_message_3 = LLMNodeChatModelMessage(
|
||||
role=PromptMessageRole.USER,
|
||||
text=METADATA_FILTER_USER_PROMPT_3.format(
|
||||
input_text=input_text,
|
||||
metadata_fields=json.dumps(metadata_fields, ensure_ascii=False),
|
||||
),
|
||||
)
|
||||
prompt_messages.append(user_prompt_message_3)
|
||||
return prompt_messages
|
||||
elif model_mode == ModelMode.COMPLETION:
|
||||
return LLMNodeCompletionModelPromptTemplate(
|
||||
text=METADATA_FILTER_COMPLETION_PROMPT.format(
|
||||
input_text=input_text,
|
||||
metadata_fields=json.dumps(metadata_fields, ensure_ascii=False),
|
||||
)
|
||||
)
|
||||
|
||||
else:
|
||||
raise InvalidModelTypeError(f"Model mode {model_mode} not support.")
|
||||
|
||||
@@ -0,0 +1,66 @@
|
||||
METADATA_FILTER_SYSTEM_PROMPT = """
|
||||
### Job Description',
|
||||
You are a text metadata extract engine that extract text's metadata based on user input and set the metadata value
|
||||
### Task
|
||||
Your task is to ONLY extract the metadatas that exist in the input text from the provided metadata list and Use the following operators ["=", "!=", ">", "<", ">=", "<="] to express logical relationships, then return result in JSON format with the key "metadata_fields" and value "metadata_field_value" and comparison operator "comparison_operator".
|
||||
### Format
|
||||
The input text is in the variable input_text. Metadata are specified as a list in the variable metadata_fields.
|
||||
### Constraint
|
||||
DO NOT include anything other than the JSON array in your response.
|
||||
""" # noqa: E501
|
||||
|
||||
METADATA_FILTER_USER_PROMPT_1 = """
|
||||
{ "input_text": "I want to know which company’s email address test@example.com is?",
|
||||
"metadata_fields": ["filename", "email", "phone", "address"]
|
||||
}
|
||||
"""
|
||||
|
||||
METADATA_FILTER_ASSISTANT_PROMPT_1 = """
|
||||
```json
|
||||
{"metadata_map": [
|
||||
{"metadata_field_name": "email", "metadata_field_value": "test@example.com", "comparison_operator": "="}
|
||||
]
|
||||
}
|
||||
```
|
||||
"""
|
||||
|
||||
METADATA_FILTER_USER_PROMPT_2 = """
|
||||
{"input_text": "What are the movies with a score of more than 9 in 2024?",
|
||||
"metadata_fields": ["name", "year", "rating", "country"]}
|
||||
"""
|
||||
|
||||
METADATA_FILTER_ASSISTANT_PROMPT_2 = """
|
||||
```json
|
||||
{"metadata_map": [
|
||||
{"metadata_field_name": "year", "metadata_field_value": "2024", "comparison_operator": "="},
|
||||
{"metadata_field_name": "rating", "metadata_field_value": "9", "comparison_operator": ">"},
|
||||
]}
|
||||
```
|
||||
"""
|
||||
|
||||
METADATA_FILTER_USER_PROMPT_3 = """
|
||||
'{{"input_text": "{input_text}",',
|
||||
'"metadata_fields": {metadata_fields}}}'
|
||||
"""
|
||||
|
||||
METADATA_FILTER_COMPLETION_PROMPT = """
|
||||
### Job Description
|
||||
You are a text metadata extract engine that extract text's metadata based on user input and set the metadata value
|
||||
### Task
|
||||
# Your task is to ONLY extract the metadatas that exist in the input text from the provided metadata list and Use the following operators ["=", "!=", ">", "<", ">=", "<="] to express logical relationships, then return result in JSON format with the key "metadata_fields" and value "metadata_field_value" and comparison operator "comparison_operator".
|
||||
### Format
|
||||
The input text is in the variable input_text. Metadata are specified as a list in the variable metadata_fields.
|
||||
### Constraint
|
||||
DO NOT include anything other than the JSON array in your response.
|
||||
### Example
|
||||
Here is the chat example between human and assistant, inside <example></example> XML tags.
|
||||
<example>
|
||||
User:{{"input_text": ["I want to know which company’s email address test@example.com is?"], "metadata_fields": ["filename", "email", "phone", "address"]}}
|
||||
Assistant:{{"metadata_map": [{{"metadata_field_name": "email", "metadata_field_value": "test@example.com", "comparison_operator": "="}}]}}
|
||||
User:{{"input_text": "What are the movies with a score of more than 9 in 2024?", "metadata_fields": ["name", "year", "rating", "country"]}}
|
||||
Assistant:{{"metadata_map": [{{"metadata_field_name": "year", "metadata_field_value": "2024", "comparison_operator": "="}, {{"metadata_field_name": "rating", "metadata_field_value": "9", "comparison_operator": ">"}}]}}
|
||||
</example>
|
||||
### User Input
|
||||
{{"input_text" : "{input_text}", "metadata_fields" : {metadata_fields}}}
|
||||
### Assistant Output
|
||||
""" # noqa: E501
|
||||
Reference in New Issue
Block a user