external knowledge api (#8913)

Co-authored-by: Yi <yxiaoisme@gmail.com>
This commit is contained in:
Jyong
2024-09-30 15:38:43 +08:00
committed by GitHub
parent 77aef9ff1d
commit 9d221a5e19
90 changed files with 4623 additions and 1171 deletions

View File

@@ -32,6 +32,7 @@ from models.dataset import (
DatasetQuery,
Document,
DocumentSegment,
ExternalKnowledgeBindings,
)
from models.model import UploadFile
from models.source import DataSourceOauthBinding
@@ -39,6 +40,7 @@ from services.errors.account import NoPermissionError
from services.errors.dataset import DatasetNameDuplicateError
from services.errors.document import DocumentIndexingError
from services.errors.file import FileNotExistsError
from services.external_knowledge_service import ExternalDatasetService
from services.feature_service import FeatureModel, FeatureService
from services.tag_service import TagService
from services.vector_service import VectorService
@@ -56,10 +58,8 @@ from tasks.sync_website_document_indexing_task import sync_website_document_inde
class DatasetService:
@staticmethod
def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None, search=None, tag_ids=None):
query = Dataset.query.filter(Dataset.provider == provider, Dataset.tenant_id == tenant_id).order_by(
Dataset.created_at.desc()
)
def get_datasets(page, per_page, tenant_id=None, user=None, search=None, tag_ids=None):
query = Dataset.query.filter(Dataset.tenant_id == tenant_id).order_by(Dataset.created_at.desc())
if user:
# get permitted dataset ids
@@ -137,7 +137,14 @@ class DatasetService:
@staticmethod
def create_empty_dataset(
tenant_id: str, name: str, indexing_technique: Optional[str], account: Account, permission: Optional[str] = None
tenant_id: str,
name: str,
indexing_technique: Optional[str],
account: Account,
permission: Optional[str] = None,
provider: str = "vendor",
external_knowledge_api_id: Optional[str] = None,
external_knowledge_id: Optional[str] = None,
):
# check if dataset name already exists
if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
@@ -156,12 +163,28 @@ class DatasetService:
dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
dataset.embedding_model = embedding_model.model if embedding_model else None
dataset.permission = permission or DatasetPermissionEnum.ONLY_ME
dataset.provider = provider
db.session.add(dataset)
db.session.flush()
if provider == "external" and external_knowledge_api_id:
external_knowledge_api = ExternalDatasetService.get_external_knowledge_api(external_knowledge_api_id)
if not external_knowledge_api:
raise ValueError("External API template not found.")
external_knowledge_binding = ExternalKnowledgeBindings(
tenant_id=tenant_id,
dataset_id=dataset.id,
external_knowledge_api_id=external_knowledge_api_id,
external_knowledge_id=external_knowledge_id,
created_by=account.id,
)
db.session.add(external_knowledge_binding)
db.session.commit()
return dataset
@staticmethod
def get_dataset(dataset_id):
def get_dataset(dataset_id) -> Dataset:
return Dataset.query.filter_by(id=dataset_id).first()
@staticmethod
@@ -202,81 +225,103 @@ class DatasetService:
@staticmethod
def update_dataset(dataset_id, data, user):
data.pop("partial_member_list", None)
filtered_data = {k: v for k, v in data.items() if v is not None or k == "description"}
dataset = DatasetService.get_dataset(dataset_id)
DatasetService.check_dataset_permission(dataset, user)
action = None
if dataset.indexing_technique != data["indexing_technique"]:
# if update indexing_technique
if data["indexing_technique"] == "economy":
action = "remove"
filtered_data["embedding_model"] = None
filtered_data["embedding_model_provider"] = None
filtered_data["collection_binding_id"] = None
elif data["indexing_technique"] == "high_quality":
action = "add"
# get embedding model setting
try:
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
provider=data["embedding_model_provider"],
model_type=ModelType.TEXT_EMBEDDING,
model=data["embedding_model"],
)
filtered_data["embedding_model"] = embedding_model.model
filtered_data["embedding_model_provider"] = embedding_model.provider
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
embedding_model.provider, embedding_model.model
)
filtered_data["collection_binding_id"] = dataset_collection_binding.id
except LLMBadRequestError:
raise ValueError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ValueError(ex.description)
else:
if dataset.provider == "external":
dataset.retrieval_model = data.get("external_retrieval_model", None)
dataset.name = data.get("name", dataset.name)
dataset.description = data.get("description", "")
external_knowledge_id = data.get("external_knowledge_id", None)
db.session.add(dataset)
if not external_knowledge_id:
raise ValueError("External knowledge id is required.")
external_knowledge_api_id = data.get("external_knowledge_api_id", None)
if not external_knowledge_api_id:
raise ValueError("External knowledge api id is required.")
external_knowledge_binding = ExternalKnowledgeBindings.query.filter_by(dataset_id=dataset_id).first()
if (
data["embedding_model_provider"] != dataset.embedding_model_provider
or data["embedding_model"] != dataset.embedding_model
external_knowledge_binding.external_knowledge_id != external_knowledge_id
or external_knowledge_binding.external_knowledge_api_id != external_knowledge_api_id
):
action = "update"
try:
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
provider=data["embedding_model_provider"],
model_type=ModelType.TEXT_EMBEDDING,
model=data["embedding_model"],
)
filtered_data["embedding_model"] = embedding_model.model
filtered_data["embedding_model_provider"] = embedding_model.provider
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
embedding_model.provider, embedding_model.model
)
filtered_data["collection_binding_id"] = dataset_collection_binding.id
except LLMBadRequestError:
raise ValueError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ValueError(ex.description)
external_knowledge_binding.external_knowledge_id = external_knowledge_id
external_knowledge_binding.external_knowledge_api_id = external_knowledge_api_id
db.session.add(external_knowledge_binding)
db.session.commit()
else:
data.pop("partial_member_list", None)
filtered_data = {k: v for k, v in data.items() if v is not None or k == "description"}
action = None
if dataset.indexing_technique != data["indexing_technique"]:
# if update indexing_technique
if data["indexing_technique"] == "economy":
action = "remove"
filtered_data["embedding_model"] = None
filtered_data["embedding_model_provider"] = None
filtered_data["collection_binding_id"] = None
elif data["indexing_technique"] == "high_quality":
action = "add"
# get embedding model setting
try:
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
provider=data["embedding_model_provider"],
model_type=ModelType.TEXT_EMBEDDING,
model=data["embedding_model"],
)
filtered_data["embedding_model"] = embedding_model.model
filtered_data["embedding_model_provider"] = embedding_model.provider
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
embedding_model.provider, embedding_model.model
)
filtered_data["collection_binding_id"] = dataset_collection_binding.id
except LLMBadRequestError:
raise ValueError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ValueError(ex.description)
else:
if (
data["embedding_model_provider"] != dataset.embedding_model_provider
or data["embedding_model"] != dataset.embedding_model
):
action = "update"
try:
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
provider=data["embedding_model_provider"],
model_type=ModelType.TEXT_EMBEDDING,
model=data["embedding_model"],
)
filtered_data["embedding_model"] = embedding_model.model
filtered_data["embedding_model_provider"] = embedding_model.provider
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
embedding_model.provider, embedding_model.model
)
filtered_data["collection_binding_id"] = dataset_collection_binding.id
except LLMBadRequestError:
raise ValueError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ValueError(ex.description)
filtered_data["updated_by"] = user.id
filtered_data["updated_at"] = datetime.datetime.now()
filtered_data["updated_by"] = user.id
filtered_data["updated_at"] = datetime.datetime.now()
# update Retrieval model
filtered_data["retrieval_model"] = data["retrieval_model"]
# update Retrieval model
filtered_data["retrieval_model"] = data["retrieval_model"]
dataset.query.filter_by(id=dataset_id).update(filtered_data)
dataset.query.filter_by(id=dataset_id).update(filtered_data)
db.session.commit()
if action:
deal_dataset_vector_index_task.delay(dataset_id, action)
db.session.commit()
if action:
deal_dataset_vector_index_task.delay(dataset_id, action)
return dataset
@staticmethod