mirror of
http://112.124.100.131/huang.ze/ebiz-dify-ai.git
synced 2025-12-08 18:36:53 +08:00
Add VESSL AI OpenAI API-compatible model provider and LLM model (#9474)
Co-authored-by: moon <moon@vessl.ai>
This commit is contained in:
@@ -84,5 +84,10 @@ VOLC_EMBEDDING_ENDPOINT_ID=
|
||||
# 360 AI Credentials
|
||||
ZHINAO_API_KEY=
|
||||
|
||||
# VESSL AI Credentials
|
||||
VESSL_AI_MODEL_NAME=
|
||||
VESSL_AI_API_KEY=
|
||||
VESSL_AI_ENDPOINT_URL=
|
||||
|
||||
# Gitee AI Credentials
|
||||
GITEE_AI_API_KEY=
|
||||
GITEE_AI_API_KEY=
|
||||
131
api/tests/integration_tests/model_runtime/vessl_ai/test_llm.py
Normal file
131
api/tests/integration_tests/model_runtime/vessl_ai/test_llm.py
Normal file
@@ -0,0 +1,131 @@
|
||||
import os
|
||||
from collections.abc import Generator
|
||||
|
||||
import pytest
|
||||
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
SystemPromptMessage,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.vessl_ai.llm.llm import VesslAILargeLanguageModel
|
||||
|
||||
|
||||
def test_validate_credentials():
|
||||
model = VesslAILargeLanguageModel()
|
||||
|
||||
with pytest.raises(CredentialsValidateFailedError):
|
||||
model.validate_credentials(
|
||||
model=os.environ.get("VESSL_AI_MODEL_NAME"),
|
||||
credentials={
|
||||
"api_key": "invalid_key",
|
||||
"endpoint_url": os.environ.get("VESSL_AI_ENDPOINT_URL"),
|
||||
"mode": "chat",
|
||||
},
|
||||
)
|
||||
|
||||
with pytest.raises(CredentialsValidateFailedError):
|
||||
model.validate_credentials(
|
||||
model=os.environ.get("VESSL_AI_MODEL_NAME"),
|
||||
credentials={
|
||||
"api_key": os.environ.get("VESSL_AI_API_KEY"),
|
||||
"endpoint_url": "http://invalid_url",
|
||||
"mode": "chat",
|
||||
},
|
||||
)
|
||||
|
||||
model.validate_credentials(
|
||||
model=os.environ.get("VESSL_AI_MODEL_NAME"),
|
||||
credentials={
|
||||
"api_key": os.environ.get("VESSL_AI_API_KEY"),
|
||||
"endpoint_url": os.environ.get("VESSL_AI_ENDPOINT_URL"),
|
||||
"mode": "chat",
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def test_invoke_model():
|
||||
model = VesslAILargeLanguageModel()
|
||||
|
||||
response = model.invoke(
|
||||
model=os.environ.get("VESSL_AI_MODEL_NAME"),
|
||||
credentials={
|
||||
"api_key": os.environ.get("VESSL_AI_API_KEY"),
|
||||
"endpoint_url": os.environ.get("VESSL_AI_ENDPOINT_URL"),
|
||||
"mode": "chat",
|
||||
},
|
||||
prompt_messages=[
|
||||
SystemPromptMessage(
|
||||
content="You are a helpful AI assistant.",
|
||||
),
|
||||
UserPromptMessage(content="Who are you?"),
|
||||
],
|
||||
model_parameters={
|
||||
"temperature": 1.0,
|
||||
"top_k": 2,
|
||||
"top_p": 0.5,
|
||||
},
|
||||
stop=["How"],
|
||||
stream=False,
|
||||
user="abc-123",
|
||||
)
|
||||
|
||||
assert isinstance(response, LLMResult)
|
||||
assert len(response.message.content) > 0
|
||||
|
||||
|
||||
def test_invoke_stream_model():
|
||||
model = VesslAILargeLanguageModel()
|
||||
|
||||
response = model.invoke(
|
||||
model=os.environ.get("VESSL_AI_MODEL_NAME"),
|
||||
credentials={
|
||||
"api_key": os.environ.get("VESSL_AI_API_KEY"),
|
||||
"endpoint_url": os.environ.get("VESSL_AI_ENDPOINT_URL"),
|
||||
"mode": "chat",
|
||||
},
|
||||
prompt_messages=[
|
||||
SystemPromptMessage(
|
||||
content="You are a helpful AI assistant.",
|
||||
),
|
||||
UserPromptMessage(content="Who are you?"),
|
||||
],
|
||||
model_parameters={
|
||||
"temperature": 1.0,
|
||||
"top_k": 2,
|
||||
"top_p": 0.5,
|
||||
},
|
||||
stop=["How"],
|
||||
stream=True,
|
||||
user="abc-123",
|
||||
)
|
||||
|
||||
assert isinstance(response, Generator)
|
||||
|
||||
for chunk in response:
|
||||
assert isinstance(chunk, LLMResultChunk)
|
||||
assert isinstance(chunk.delta, LLMResultChunkDelta)
|
||||
assert isinstance(chunk.delta.message, AssistantPromptMessage)
|
||||
|
||||
|
||||
def test_get_num_tokens():
|
||||
model = VesslAILargeLanguageModel()
|
||||
|
||||
num_tokens = model.get_num_tokens(
|
||||
model=os.environ.get("VESSL_AI_MODEL_NAME"),
|
||||
credentials={
|
||||
"api_key": os.environ.get("VESSL_AI_API_KEY"),
|
||||
"endpoint_url": os.environ.get("VESSL_AI_ENDPOINT_URL"),
|
||||
},
|
||||
prompt_messages=[
|
||||
SystemPromptMessage(
|
||||
content="You are a helpful AI assistant.",
|
||||
),
|
||||
UserPromptMessage(content="Hello World!"),
|
||||
],
|
||||
)
|
||||
|
||||
assert isinstance(num_tokens, int)
|
||||
assert num_tokens == 21
|
||||
Reference in New Issue
Block a user