Add VESSL AI OpenAI API-compatible model provider and LLM model (#9474)

Co-authored-by: moon <moon@vessl.ai>
This commit is contained in:
larcane97
2024-11-01 14:38:52 +09:00
committed by GitHub
parent f674de4f5d
commit 8d5456b6d0
10 changed files with 289 additions and 1 deletions

View File

@@ -84,5 +84,10 @@ VOLC_EMBEDDING_ENDPOINT_ID=
# 360 AI Credentials
ZHINAO_API_KEY=
# VESSL AI Credentials
VESSL_AI_MODEL_NAME=
VESSL_AI_API_KEY=
VESSL_AI_ENDPOINT_URL=
# Gitee AI Credentials
GITEE_AI_API_KEY=
GITEE_AI_API_KEY=

View File

@@ -0,0 +1,131 @@
import os
from collections.abc import Generator
import pytest
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
SystemPromptMessage,
UserPromptMessage,
)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.vessl_ai.llm.llm import VesslAILargeLanguageModel
def test_validate_credentials():
model = VesslAILargeLanguageModel()
with pytest.raises(CredentialsValidateFailedError):
model.validate_credentials(
model=os.environ.get("VESSL_AI_MODEL_NAME"),
credentials={
"api_key": "invalid_key",
"endpoint_url": os.environ.get("VESSL_AI_ENDPOINT_URL"),
"mode": "chat",
},
)
with pytest.raises(CredentialsValidateFailedError):
model.validate_credentials(
model=os.environ.get("VESSL_AI_MODEL_NAME"),
credentials={
"api_key": os.environ.get("VESSL_AI_API_KEY"),
"endpoint_url": "http://invalid_url",
"mode": "chat",
},
)
model.validate_credentials(
model=os.environ.get("VESSL_AI_MODEL_NAME"),
credentials={
"api_key": os.environ.get("VESSL_AI_API_KEY"),
"endpoint_url": os.environ.get("VESSL_AI_ENDPOINT_URL"),
"mode": "chat",
},
)
def test_invoke_model():
model = VesslAILargeLanguageModel()
response = model.invoke(
model=os.environ.get("VESSL_AI_MODEL_NAME"),
credentials={
"api_key": os.environ.get("VESSL_AI_API_KEY"),
"endpoint_url": os.environ.get("VESSL_AI_ENDPOINT_URL"),
"mode": "chat",
},
prompt_messages=[
SystemPromptMessage(
content="You are a helpful AI assistant.",
),
UserPromptMessage(content="Who are you?"),
],
model_parameters={
"temperature": 1.0,
"top_k": 2,
"top_p": 0.5,
},
stop=["How"],
stream=False,
user="abc-123",
)
assert isinstance(response, LLMResult)
assert len(response.message.content) > 0
def test_invoke_stream_model():
model = VesslAILargeLanguageModel()
response = model.invoke(
model=os.environ.get("VESSL_AI_MODEL_NAME"),
credentials={
"api_key": os.environ.get("VESSL_AI_API_KEY"),
"endpoint_url": os.environ.get("VESSL_AI_ENDPOINT_URL"),
"mode": "chat",
},
prompt_messages=[
SystemPromptMessage(
content="You are a helpful AI assistant.",
),
UserPromptMessage(content="Who are you?"),
],
model_parameters={
"temperature": 1.0,
"top_k": 2,
"top_p": 0.5,
},
stop=["How"],
stream=True,
user="abc-123",
)
assert isinstance(response, Generator)
for chunk in response:
assert isinstance(chunk, LLMResultChunk)
assert isinstance(chunk.delta, LLMResultChunkDelta)
assert isinstance(chunk.delta.message, AssistantPromptMessage)
def test_get_num_tokens():
model = VesslAILargeLanguageModel()
num_tokens = model.get_num_tokens(
model=os.environ.get("VESSL_AI_MODEL_NAME"),
credentials={
"api_key": os.environ.get("VESSL_AI_API_KEY"),
"endpoint_url": os.environ.get("VESSL_AI_ENDPOINT_URL"),
},
prompt_messages=[
SystemPromptMessage(
content="You are a helpful AI assistant.",
),
UserPromptMessage(content="Hello World!"),
],
)
assert isinstance(num_tokens, int)
assert num_tokens == 21