Feat/vector db pgvector (#3879)

This commit is contained in:
LiuVaayne
2024-05-10 17:20:30 +08:00
committed by GitHub
parent 4d5a4e4cef
commit 875249eb00
13 changed files with 316 additions and 9 deletions

View File

@@ -0,0 +1,169 @@
import json
import uuid
from contextlib import contextmanager
from typing import Any
import psycopg2.extras
import psycopg2.pool
from pydantic import BaseModel, root_validator
from core.rag.datasource.vdb.vector_base import BaseVector
from core.rag.models.document import Document
from extensions.ext_redis import redis_client
class PGVectorConfig(BaseModel):
host: str
port: int
user: str
password: str
database: str
@root_validator()
def validate_config(cls, values: dict) -> dict:
if not values["host"]:
raise ValueError("config PGVECTOR_HOST is required")
if not values["port"]:
raise ValueError("config PGVECTOR_PORT is required")
if not values["user"]:
raise ValueError("config PGVECTOR_USER is required")
if not values["password"]:
raise ValueError("config PGVECTOR_PASSWORD is required")
if not values["database"]:
raise ValueError("config PGVECTOR_DATABASE is required")
return values
SQL_CREATE_TABLE = """
CREATE TABLE IF NOT EXISTS {table_name} (
id UUID PRIMARY KEY,
text TEXT NOT NULL,
meta JSONB NOT NULL,
embedding vector({dimension}) NOT NULL
) using heap;
"""
class PGVector(BaseVector):
def __init__(self, collection_name: str, config: PGVectorConfig):
super().__init__(collection_name)
self.pool = self._create_connection_pool(config)
self.table_name = f"embedding_{collection_name}"
def get_type(self) -> str:
return "pgvector"
def _create_connection_pool(self, config: PGVectorConfig):
return psycopg2.pool.SimpleConnectionPool(
1,
5,
host=config.host,
port=config.port,
user=config.user,
password=config.password,
database=config.database,
)
@contextmanager
def _get_cursor(self):
conn = self.pool.getconn()
cur = conn.cursor()
try:
yield cur
finally:
cur.close()
conn.commit()
self.pool.putconn(conn)
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
dimension = len(embeddings[0])
self._create_collection(dimension)
return self.add_texts(texts, embeddings)
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
values = []
pks = []
for i, doc in enumerate(documents):
doc_id = doc.metadata.get("doc_id", str(uuid.uuid4()))
pks.append(doc_id)
values.append(
(
doc_id,
doc.page_content,
json.dumps(doc.metadata),
embeddings[i],
)
)
with self._get_cursor() as cur:
psycopg2.extras.execute_values(
cur, f"INSERT INTO {self.table_name} (id, text, meta, embedding) VALUES %s", values
)
return pks
def text_exists(self, id: str) -> bool:
with self._get_cursor() as cur:
cur.execute(f"SELECT id FROM {self.table_name} WHERE id = %s", (id,))
return cur.fetchone() is not None
def get_by_ids(self, ids: list[str]) -> list[Document]:
with self._get_cursor() as cur:
cur.execute(f"SELECT meta, text FROM {self.table_name} WHERE id IN %s", (tuple(ids),))
docs = []
for record in cur:
docs.append(Document(page_content=record[1], metadata=record[0]))
return docs
def delete_by_ids(self, ids: list[str]) -> None:
with self._get_cursor() as cur:
cur.execute(f"DELETE FROM {self.table_name} WHERE id IN %s", (tuple(ids),))
def delete_by_metadata_field(self, key: str, value: str) -> None:
with self._get_cursor() as cur:
cur.execute(f"DELETE FROM {self.table_name} WHERE meta->>%s = %s", (key, value))
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
"""
Search the nearest neighbors to a vector.
:param query_vector: The input vector to search for similar items.
:param top_k: The number of nearest neighbors to return, default is 5.
:return: List of Documents that are nearest to the query vector.
"""
top_k = kwargs.get("top_k", 5)
with self._get_cursor() as cur:
cur.execute(
f"SELECT meta, text, embedding <=> %s AS distance FROM {self.table_name} ORDER BY distance LIMIT {top_k}",
(json.dumps(query_vector),),
)
docs = []
score_threshold = kwargs.get("score_threshold") if kwargs.get("score_threshold") else 0.0
for record in cur:
metadata, text, distance = record
score = 1 - distance
metadata["score"] = score
if score > score_threshold:
docs.append(Document(page_content=text, metadata=metadata))
return docs
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
# do not support bm25 search
return []
def delete(self) -> None:
with self._get_cursor() as cur:
cur.execute(f"DROP TABLE IF EXISTS {self.table_name}")
def _create_collection(self, dimension: int):
cache_key = f"vector_indexing_{self._collection_name}"
lock_name = f"{cache_key}_lock"
with redis_client.lock(lock_name, timeout=20):
collection_exist_cache_key = f"vector_indexing_{self._collection_name}"
if redis_client.get(collection_exist_cache_key):
return
with self._get_cursor() as cur:
cur.execute("CREATE EXTENSION IF NOT EXISTS vector")
cur.execute(SQL_CREATE_TABLE.format(table_name=self.table_name, dimension=dimension))
# TODO: create index https://github.com/pgvector/pgvector?tab=readme-ov-file#indexing
redis_client.set(collection_exist_cache_key, 1, ex=3600)

View File

@@ -164,6 +164,29 @@ class Vector:
),
dim=dim
)
elif vector_type == "pgvector":
from core.rag.datasource.vdb.pgvector.pgvector import PGVector, PGVectorConfig
if self._dataset.index_struct_dict:
class_prefix: str = self._dataset.index_struct_dict["vector_store"]["class_prefix"]
collection_name = class_prefix
else:
dataset_id = self._dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = {
"type": "pgvector",
"vector_store": {"class_prefix": collection_name}}
self._dataset.index_struct = json.dumps(index_struct_dict)
return PGVector(
collection_name=collection_name,
config=PGVectorConfig(
host=config.get("PGVECTOR_HOST"),
port=config.get("PGVECTOR_PORT"),
user=config.get("PGVECTOR_USER"),
password=config.get("PGVECTOR_PASSWORD"),
database=config.get("PGVECTOR_DATABASE"),
),
)
else:
raise ValueError(f"Vector store {config.get('VECTOR_STORE')} is not supported.")