mirror of
http://112.124.100.131/huang.ze/ebiz-dify-ai.git
synced 2025-12-11 03:46:52 +08:00
Feat/assistant app (#2086)
Co-authored-by: chenhe <guchenhe@gmail.com> Co-authored-by: Pascal M <11357019+perzeuss@users.noreply.github.com>
This commit is contained in:
140
api/core/tools/tool/builtin_tool.py
Normal file
140
api/core/tools/tool/builtin_tool.py
Normal file
@@ -0,0 +1,140 @@
|
||||
from core.tools.tool.tool import Tool
|
||||
from core.tools.model.tool_model_manager import ToolModelManager
|
||||
from core.model_runtime.entities.message_entities import PromptMessage
|
||||
from core.model_runtime.entities.llm_entities import LLMResult
|
||||
from core.model_runtime.entities.message_entities import SystemPromptMessage, UserPromptMessage
|
||||
from core.tools.utils.web_reader_tool import get_url
|
||||
|
||||
from typing import List
|
||||
from enum import Enum
|
||||
|
||||
_SUMMARY_PROMPT = """You are a professional language researcher, you are interested in the language
|
||||
and you can quickly aimed at the main point of an webpage and reproduce it in your own words but
|
||||
retain the original meaning and keep the key points.
|
||||
however, the text you got is too long, what you got is possible a part of the text.
|
||||
Please summarize the text you got.
|
||||
"""
|
||||
|
||||
|
||||
class BuiltinTool(Tool):
|
||||
"""
|
||||
Builtin tool
|
||||
|
||||
:param meta: the meta data of a tool call processing
|
||||
"""
|
||||
|
||||
def invoke_model(
|
||||
self, user_id: str, prompt_messages: List[PromptMessage], stop: List[str]
|
||||
) -> LLMResult:
|
||||
"""
|
||||
invoke model
|
||||
|
||||
:param model_config: the model config
|
||||
:param prompt_messages: the prompt messages
|
||||
:param stop: the stop words
|
||||
:return: the model result
|
||||
"""
|
||||
# invoke model
|
||||
return ToolModelManager.invoke(
|
||||
user_id=user_id,
|
||||
tenant_id=self.runtime.tenant_id,
|
||||
tool_type='builtin',
|
||||
tool_name=self.identity.name,
|
||||
prompt_messages=prompt_messages,
|
||||
)
|
||||
|
||||
def get_max_tokens(self) -> int:
|
||||
"""
|
||||
get max tokens
|
||||
|
||||
:param model_config: the model config
|
||||
:return: the max tokens
|
||||
"""
|
||||
return ToolModelManager.get_max_llm_context_tokens(
|
||||
tenant_id=self.runtime.tenant_id,
|
||||
)
|
||||
|
||||
def get_prompt_tokens(self, prompt_messages: List[PromptMessage]) -> int:
|
||||
"""
|
||||
get prompt tokens
|
||||
|
||||
:param prompt_messages: the prompt messages
|
||||
:return: the tokens
|
||||
"""
|
||||
return ToolModelManager.calculate_tokens(
|
||||
tenant_id=self.runtime.tenant_id,
|
||||
prompt_messages=prompt_messages
|
||||
)
|
||||
|
||||
def summary(self, user_id: str, content: str) -> str:
|
||||
max_tokens = self.get_max_tokens()
|
||||
|
||||
if self.get_prompt_tokens(prompt_messages=[
|
||||
UserPromptMessage(content=content)
|
||||
]) < max_tokens * 0.6:
|
||||
return content
|
||||
|
||||
def get_prompt_tokens(content: str) -> int:
|
||||
return self.get_prompt_tokens(prompt_messages=[
|
||||
SystemPromptMessage(content=_SUMMARY_PROMPT),
|
||||
UserPromptMessage(content=content)
|
||||
])
|
||||
|
||||
def summarize(content: str) -> str:
|
||||
summary = self.invoke_model(user_id=user_id, prompt_messages=[
|
||||
SystemPromptMessage(content=_SUMMARY_PROMPT),
|
||||
UserPromptMessage(content=content)
|
||||
], stop=[])
|
||||
|
||||
return summary.message.content
|
||||
|
||||
lines = content.split('\n')
|
||||
new_lines = []
|
||||
# split long line into multiple lines
|
||||
for i in range(len(lines)):
|
||||
line = lines[i]
|
||||
if not line.strip():
|
||||
continue
|
||||
if len(line) < max_tokens * 0.5:
|
||||
new_lines.append(line)
|
||||
elif get_prompt_tokens(line) > max_tokens * 0.7:
|
||||
while get_prompt_tokens(line) > max_tokens * 0.7:
|
||||
new_lines.append(line[:int(max_tokens * 0.5)])
|
||||
line = line[int(max_tokens * 0.5):]
|
||||
new_lines.append(line)
|
||||
else:
|
||||
new_lines.append(line)
|
||||
|
||||
# merge lines into messages with max tokens
|
||||
messages: List[str] = []
|
||||
for i in new_lines:
|
||||
if len(messages) == 0:
|
||||
messages.append(i)
|
||||
else:
|
||||
if len(messages[-1]) + len(i) < max_tokens * 0.5:
|
||||
messages[-1] += i
|
||||
if get_prompt_tokens(messages[-1] + i) > max_tokens * 0.7:
|
||||
messages.append(i)
|
||||
else:
|
||||
messages[-1] += i
|
||||
|
||||
summaries = []
|
||||
for i in range(len(messages)):
|
||||
message = messages[i]
|
||||
summary = summarize(message)
|
||||
summaries.append(summary)
|
||||
|
||||
result = '\n'.join(summaries)
|
||||
|
||||
if self.get_prompt_tokens(prompt_messages=[
|
||||
UserPromptMessage(content=result)
|
||||
]) > max_tokens * 0.7:
|
||||
return self.summary(user_id=user_id, content=result)
|
||||
|
||||
return result
|
||||
|
||||
def get_url(self, url: str, user_agent: str = None) -> str:
|
||||
"""
|
||||
get url
|
||||
"""
|
||||
return get_url(url, user_agent=user_agent)
|
||||
Reference in New Issue
Block a user