enhancement: introduce Ruff for Python linter for reordering and removing unused imports with automated pre-commit and sytle check (#2366)

This commit is contained in:
Bowen Liang
2024-02-06 13:21:13 +08:00
committed by GitHub
parent 42344795cd
commit 843280f82b
333 changed files with 2109 additions and 1050 deletions

View File

@@ -1,11 +1,9 @@
from typing import List, cast
from core.entities.application_entities import ModelConfigEntity
from core.entities.message_entities import lc_messages_to_prompt_messages
from core.model_runtime.entities.message_entities import PromptMessage
from core.model_runtime.entities.model_entities import ModelPropertyKey
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from langchain.schema import BaseMessage
class CalcTokenMixin:

View File

@@ -1,10 +1,5 @@
from typing import Any, List, Optional, Sequence, Tuple, Union, cast
from typing import Any, List, Optional, Sequence, Tuple, Union
from core.entities.application_entities import ModelConfigEntity
from core.entities.message_entities import lc_messages_to_prompt_messages
from core.model_manager import ModelInstance
from core.model_runtime.entities.message_entities import PromptMessageTool
from core.third_party.langchain.llms.fake import FakeLLM
from langchain.agents import BaseSingleActionAgent, OpenAIFunctionsAgent
from langchain.agents.openai_functions_agent.base import _format_intermediate_steps, _parse_ai_message
from langchain.callbacks.base import BaseCallbackManager
@@ -14,6 +9,12 @@ from langchain.schema import AgentAction, AgentFinish, AIMessage, SystemMessage
from langchain.tools import BaseTool
from pydantic import root_validator
from core.entities.application_entities import ModelConfigEntity
from core.entities.message_entities import lc_messages_to_prompt_messages
from core.model_manager import ModelInstance
from core.model_runtime.entities.message_entities import PromptMessageTool
from core.third_party.langchain.llms.fake import FakeLLM
class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
"""

View File

@@ -1,4 +1,23 @@
from typing import Any, List, Optional, Sequence, Tuple, Union, cast
from typing import Any, List, Optional, Sequence, Tuple, Union
from langchain.agents import BaseSingleActionAgent, OpenAIFunctionsAgent
from langchain.agents.openai_functions_agent.base import _format_intermediate_steps, _parse_ai_message
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.chat_models.openai import _convert_message_to_dict, _import_tiktoken
from langchain.memory.prompt import SUMMARY_PROMPT
from langchain.prompts.chat import BaseMessagePromptTemplate
from langchain.schema import (
AgentAction,
AgentFinish,
AIMessage,
BaseMessage,
HumanMessage,
SystemMessage,
get_buffer_string,
)
from langchain.tools import BaseTool
from pydantic import root_validator
from core.agent.agent.agent_llm_callback import AgentLLMCallback
from core.agent.agent.calc_token_mixin import CalcTokenMixin, ExceededLLMTokensLimitError
@@ -7,19 +26,7 @@ from core.entities.application_entities import ModelConfigEntity
from core.entities.message_entities import lc_messages_to_prompt_messages
from core.model_manager import ModelInstance
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.third_party.langchain.llms.fake import FakeLLM
from langchain.agents import BaseSingleActionAgent, OpenAIFunctionsAgent
from langchain.agents.openai_functions_agent.base import _format_intermediate_steps, _parse_ai_message
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.chat_models.openai import _convert_message_to_dict, _import_tiktoken
from langchain.memory.prompt import SUMMARY_PROMPT
from langchain.prompts.chat import BaseMessagePromptTemplate
from langchain.schema import (AgentAction, AgentFinish, AIMessage, BaseMessage, HumanMessage, SystemMessage,
get_buffer_string)
from langchain.tools import BaseTool
from pydantic import root_validator
class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, CalcTokenMixin):

View File

@@ -1,8 +1,6 @@
import re
from typing import Any, List, Optional, Sequence, Tuple, Union, cast
from core.chain.llm_chain import LLMChain
from core.entities.application_entities import ModelConfigEntity
from langchain import BasePromptTemplate, PromptTemplate
from langchain.agents import Agent, AgentOutputParser, StructuredChatAgent
from langchain.agents.structured_chat.base import HUMAN_MESSAGE_TEMPLATE
@@ -13,6 +11,9 @@ from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate, Sy
from langchain.schema import AgentAction, AgentFinish, OutputParserException
from langchain.tools import BaseTool
from core.chain.llm_chain import LLMChain
from core.entities.application_entities import ModelConfigEntity
FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
The nouns in the format of "Thought", "Action", "Action Input", "Final Answer" must be expressed in English.
Valid "action" values: "Final Answer" or {tool_names}

View File

@@ -1,11 +1,6 @@
import re
from typing import Any, List, Optional, Sequence, Tuple, Union, cast
from core.agent.agent.agent_llm_callback import AgentLLMCallback
from core.agent.agent.calc_token_mixin import CalcTokenMixin, ExceededLLMTokensLimitError
from core.chain.llm_chain import LLMChain
from core.entities.application_entities import ModelConfigEntity
from core.entities.message_entities import lc_messages_to_prompt_messages
from langchain import BasePromptTemplate, PromptTemplate
from langchain.agents import Agent, AgentOutputParser, StructuredChatAgent
from langchain.agents.structured_chat.base import HUMAN_MESSAGE_TEMPLATE
@@ -14,10 +9,23 @@ from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.memory.prompt import SUMMARY_PROMPT
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate
from langchain.schema import (AgentAction, AgentFinish, AIMessage, BaseMessage, HumanMessage, OutputParserException,
get_buffer_string)
from langchain.schema import (
AgentAction,
AgentFinish,
AIMessage,
BaseMessage,
HumanMessage,
OutputParserException,
get_buffer_string,
)
from langchain.tools import BaseTool
from core.agent.agent.agent_llm_callback import AgentLLMCallback
from core.agent.agent.calc_token_mixin import CalcTokenMixin, ExceededLLMTokensLimitError
from core.chain.llm_chain import LLMChain
from core.entities.application_entities import ModelConfigEntity
from core.entities.message_entities import lc_messages_to_prompt_messages
FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
The nouns in the format of "Thought", "Action", "Action Input", "Final Answer" must be expressed in English.
Valid "action" values: "Final Answer" or {tool_names}

View File

@@ -2,6 +2,12 @@ import enum
import logging
from typing import Optional, Union
from langchain.agents import AgentExecutor as LCAgentExecutor
from langchain.agents import BaseMultiActionAgent, BaseSingleActionAgent
from langchain.callbacks.manager import Callbacks
from langchain.tools import BaseTool
from pydantic import BaseModel, Extra
from core.agent.agent.agent_llm_callback import AgentLLMCallback
from core.agent.agent.multi_dataset_router_agent import MultiDatasetRouterAgent
from core.agent.agent.openai_function_call import AutoSummarizingOpenAIFunctionCallAgent
@@ -15,11 +21,6 @@ from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_runtime.errors.invoke import InvokeError
from core.tools.tool.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
from langchain.agents import AgentExecutor as LCAgentExecutor
from langchain.agents import BaseMultiActionAgent, BaseSingleActionAgent
from langchain.callbacks.manager import Callbacks
from langchain.tools import BaseTool
from pydantic import BaseModel, Extra
class PlanningStrategy(str, enum.Enum):