feat: add zhipuai (#1188)

This commit is contained in:
takatost
2023-09-18 17:32:31 +08:00
committed by GitHub
parent c8bd76cd66
commit 827c97f0d3
36 changed files with 1087 additions and 111 deletions

View File

@@ -45,6 +45,9 @@ class ModelProviderFactory:
elif provider_name == 'wenxin':
from core.model_providers.providers.wenxin_provider import WenxinProvider
return WenxinProvider
elif provider_name == 'zhipuai':
from core.model_providers.providers.zhipuai_provider import ZhipuAIProvider
return ZhipuAIProvider
elif provider_name == 'chatglm':
from core.model_providers.providers.chatglm_provider import ChatGLMProvider
return ChatGLMProvider

View File

@@ -0,0 +1,22 @@
from core.model_providers.error import LLMBadRequestError
from core.model_providers.providers.base import BaseModelProvider
from core.model_providers.models.embedding.base import BaseEmbedding
from core.third_party.langchain.embeddings.zhipuai_embedding import ZhipuAIEmbeddings
class ZhipuAIEmbedding(BaseEmbedding):
def __init__(self, model_provider: BaseModelProvider, name: str):
credentials = model_provider.get_model_credentials(
model_name=name,
model_type=self.type
)
client = ZhipuAIEmbeddings(
model=name,
**credentials,
)
super().__init__(model_provider, client, name)
def handle_exceptions(self, ex: Exception) -> Exception:
return LLMBadRequestError(f"ZhipuAI embedding: {str(ex)}")

View File

@@ -49,6 +49,7 @@ class KwargRule(Generic[T], BaseModel):
max: Optional[T] = None
default: Optional[T] = None
alias: Optional[str] = None
precision: Optional[int] = None
class ModelKwargsRules(BaseModel):

View File

@@ -0,0 +1,61 @@
from typing import List, Optional, Any
from langchain.callbacks.manager import Callbacks
from langchain.schema import LLMResult
from core.model_providers.error import LLMBadRequestError
from core.model_providers.models.llm.base import BaseLLM
from core.model_providers.models.entity.message import PromptMessage
from core.model_providers.models.entity.model_params import ModelMode, ModelKwargs
from core.third_party.langchain.llms.zhipuai_llm import ZhipuAIChatLLM
class ZhipuAIModel(BaseLLM):
model_mode: ModelMode = ModelMode.CHAT
def _init_client(self) -> Any:
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, self.model_kwargs)
return ZhipuAIChatLLM(
streaming=self.streaming,
callbacks=self.callbacks,
**self.credentials,
**provider_model_kwargs
)
def _run(self, messages: List[PromptMessage],
stop: Optional[List[str]] = None,
callbacks: Callbacks = None,
**kwargs) -> LLMResult:
"""
run predict by prompt messages and stop words.
:param messages:
:param stop:
:param callbacks:
:return:
"""
prompts = self._get_prompt_from_messages(messages)
return self._client.generate([prompts], stop, callbacks)
def get_num_tokens(self, messages: List[PromptMessage]) -> int:
"""
get num tokens of prompt messages.
:param messages:
:return:
"""
prompts = self._get_prompt_from_messages(messages)
return max(self._client.get_num_tokens_from_messages(prompts), 0)
def _set_model_kwargs(self, model_kwargs: ModelKwargs):
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, model_kwargs)
for k, v in provider_model_kwargs.items():
if hasattr(self.client, k):
setattr(self.client, k, v)
def handle_exceptions(self, ex: Exception) -> Exception:
return LLMBadRequestError(f"ZhipuAI: {str(ex)}")
@property
def support_streaming(self):
return True

View File

@@ -23,14 +23,18 @@ class OpenAIModeration(BaseModeration):
# 2000 text per chunk
length = 2000
chunks = [text[i:i + length] for i in range(0, len(text), length)]
text_chunks = [text[i:i + length] for i in range(0, len(text), length)]
moderation_result = self._client.create(input=chunks,
api_key=credentials['openai_api_key'])
max_text_chunks = 32
chunks = [text_chunks[i:i + max_text_chunks] for i in range(0, len(text_chunks), max_text_chunks)]
for result in moderation_result.results:
if result['flagged'] is True:
return False
for text_chunk in chunks:
moderation_result = self._client.create(input=text_chunk,
api_key=credentials['openai_api_key'])
for result in moderation_result.results:
if result['flagged'] is True:
return False
return True

View File

@@ -69,11 +69,11 @@ class AnthropicProvider(BaseModelProvider):
:return:
"""
return ModelKwargsRules(
temperature=KwargRule[float](min=0, max=1, default=1),
top_p=KwargRule[float](min=0, max=1, default=0.7),
temperature=KwargRule[float](min=0, max=1, default=1, precision=2),
top_p=KwargRule[float](min=0, max=1, default=0.7, precision=2),
presence_penalty=KwargRule[float](enabled=False),
frequency_penalty=KwargRule[float](enabled=False),
max_tokens=KwargRule[int](alias="max_tokens_to_sample", min=10, max=100000, default=256),
max_tokens=KwargRule[int](alias="max_tokens_to_sample", min=10, max=100000, default=256, precision=0),
)
@classmethod

View File

@@ -164,14 +164,14 @@ class AzureOpenAIProvider(BaseModelProvider):
model_credentials = self.get_model_credentials(model_name, model_type)
return ModelKwargsRules(
temperature=KwargRule[float](min=0, max=2, default=1),
top_p=KwargRule[float](min=0, max=1, default=1),
presence_penalty=KwargRule[float](min=-2, max=2, default=0),
frequency_penalty=KwargRule[float](min=-2, max=2, default=0),
temperature=KwargRule[float](min=0, max=2, default=1, precision=2),
top_p=KwargRule[float](min=0, max=1, default=1, precision=2),
presence_penalty=KwargRule[float](min=-2, max=2, default=0, precision=2),
frequency_penalty=KwargRule[float](min=-2, max=2, default=0, precision=2),
max_tokens=KwargRule[int](min=10, max=base_model_max_tokens.get(
model_credentials['base_model_name'],
4097
), default=16),
), default=16, precision=0),
)
@classmethod

View File

@@ -64,11 +64,11 @@ class ChatGLMProvider(BaseModelProvider):
}
return ModelKwargsRules(
temperature=KwargRule[float](min=0, max=2, default=1),
top_p=KwargRule[float](min=0, max=1, default=0.7),
temperature=KwargRule[float](min=0, max=2, default=1, precision=2),
top_p=KwargRule[float](min=0, max=1, default=0.7, precision=2),
presence_penalty=KwargRule[float](enabled=False),
frequency_penalty=KwargRule[float](enabled=False),
max_tokens=KwargRule[int](alias='max_token', min=10, max=model_max_tokens.get(model_name), default=2048),
max_tokens=KwargRule[int](alias='max_token', min=10, max=model_max_tokens.get(model_name), default=2048, precision=0),
)
@classmethod

View File

@@ -45,6 +45,18 @@ class HostedModelProviders(BaseModel):
hosted_model_providers = HostedModelProviders()
class HostedModerationConfig(BaseModel):
enabled: bool = False
providers: list[str] = []
class HostedConfig(BaseModel):
moderation = HostedModerationConfig()
hosted_config = HostedConfig()
def init_app(app: Flask):
if os.environ.get("DEBUG") and os.environ.get("DEBUG").lower() == 'true':
langchain.verbose = True
@@ -78,3 +90,9 @@ def init_app(app: Flask):
paid_min_quantity=app.config.get("HOSTED_ANTHROPIC_PAID_MIN_QUANTITY"),
paid_max_quantity=app.config.get("HOSTED_ANTHROPIC_PAID_MAX_QUANTITY"),
)
if app.config.get("HOSTED_MODERATION_ENABLED") and app.config.get("HOSTED_MODERATION_PROVIDERS"):
hosted_config.moderation = HostedModerationConfig(
enabled=app.config.get("HOSTED_MODERATION_ENABLED"),
providers=app.config.get("HOSTED_MODERATION_PROVIDERS").split(',')
)

View File

@@ -47,11 +47,11 @@ class HuggingfaceHubProvider(BaseModelProvider):
:return:
"""
return ModelKwargsRules(
temperature=KwargRule[float](min=0, max=2, default=1),
top_p=KwargRule[float](min=0.01, max=0.99, default=0.7),
temperature=KwargRule[float](min=0, max=2, default=1, precision=2),
top_p=KwargRule[float](min=0.01, max=0.99, default=0.7, precision=2),
presence_penalty=KwargRule[float](enabled=False),
frequency_penalty=KwargRule[float](enabled=False),
max_tokens=KwargRule[int](alias='max_new_tokens', min=10, max=4000, default=200),
max_tokens=KwargRule[int](alias='max_new_tokens', min=10, max=4000, default=200, precision=0),
)
@classmethod

View File

@@ -52,9 +52,9 @@ class LocalAIProvider(BaseModelProvider):
:return:
"""
return ModelKwargsRules(
temperature=KwargRule[float](min=0, max=2, default=0.7),
top_p=KwargRule[float](min=0, max=1, default=1),
max_tokens=KwargRule[int](min=10, max=4097, default=16),
temperature=KwargRule[float](min=0, max=2, default=0.7, precision=2),
top_p=KwargRule[float](min=0, max=1, default=1, precision=2),
max_tokens=KwargRule[int](min=10, max=4097, default=16, precision=0),
)
@classmethod

View File

@@ -74,11 +74,11 @@ class MinimaxProvider(BaseModelProvider):
}
return ModelKwargsRules(
temperature=KwargRule[float](min=0.01, max=1, default=0.9),
top_p=KwargRule[float](min=0, max=1, default=0.95),
temperature=KwargRule[float](min=0.01, max=1, default=0.9, precision=2),
top_p=KwargRule[float](min=0, max=1, default=0.95, precision=2),
presence_penalty=KwargRule[float](enabled=False),
frequency_penalty=KwargRule[float](enabled=False),
max_tokens=KwargRule[int](min=10, max=model_max_tokens.get(model_name, 6144), default=1024),
max_tokens=KwargRule[int](min=10, max=model_max_tokens.get(model_name, 6144), default=1024, precision=0),
)
@classmethod

View File

@@ -133,11 +133,11 @@ class OpenAIProvider(BaseModelProvider):
}
return ModelKwargsRules(
temperature=KwargRule[float](min=0, max=2, default=1),
top_p=KwargRule[float](min=0, max=1, default=1),
presence_penalty=KwargRule[float](min=-2, max=2, default=0),
frequency_penalty=KwargRule[float](min=-2, max=2, default=0),
max_tokens=KwargRule[int](min=10, max=model_max_tokens.get(model_name, 4097), default=16),
temperature=KwargRule[float](min=0, max=2, default=1, precision=2),
top_p=KwargRule[float](min=0, max=1, default=1, precision=2),
presence_penalty=KwargRule[float](min=-2, max=2, default=0, precision=2),
frequency_penalty=KwargRule[float](min=-2, max=2, default=0, precision=2),
max_tokens=KwargRule[int](min=10, max=model_max_tokens.get(model_name, 4097), default=16, precision=0),
)
@classmethod

View File

@@ -45,11 +45,11 @@ class OpenLLMProvider(BaseModelProvider):
:return:
"""
return ModelKwargsRules(
temperature=KwargRule[float](min=0.01, max=2, default=1),
top_p=KwargRule[float](min=0, max=1, default=0.7),
presence_penalty=KwargRule[float](min=-2, max=2, default=0),
frequency_penalty=KwargRule[float](min=-2, max=2, default=0),
max_tokens=KwargRule[int](alias='max_new_tokens', min=10, max=4000, default=128),
temperature=KwargRule[float](min=0.01, max=2, default=1, precision=2),
top_p=KwargRule[float](min=0, max=1, default=0.7, precision=2),
presence_penalty=KwargRule[float](min=-2, max=2, default=0, precision=2),
frequency_penalty=KwargRule[float](min=-2, max=2, default=0, precision=2),
max_tokens=KwargRule[int](alias='max_new_tokens', min=10, max=4000, default=128, precision=0),
)
@classmethod

View File

@@ -72,6 +72,7 @@ class ReplicateProvider(BaseModelProvider):
min=float(value.get('minimum')) if value.get('minimum') is not None else None,
max=float(value.get('maximum')) if value.get('maximum') is not None else None,
default=float(value.get('default')) if value.get('default') is not None else None,
precision = 2
)
if key == 'temperature':
model_kwargs_rules.temperature = kwarg_rule
@@ -84,6 +85,7 @@ class ReplicateProvider(BaseModelProvider):
min=int(value.get('minimum')) if value.get('minimum') is not None else 1,
max=int(value.get('maximum')) if value.get('maximum') is not None else 8000,
default=int(value.get('default')) if value.get('default') is not None else 500,
precision = 0
)
return model_kwargs_rules

View File

@@ -62,11 +62,11 @@ class SparkProvider(BaseModelProvider):
:return:
"""
return ModelKwargsRules(
temperature=KwargRule[float](min=0, max=1, default=0.5),
temperature=KwargRule[float](min=0, max=1, default=0.5, precision=2),
top_p=KwargRule[float](enabled=False),
presence_penalty=KwargRule[float](enabled=False),
frequency_penalty=KwargRule[float](enabled=False),
max_tokens=KwargRule[int](min=10, max=4096, default=2048),
max_tokens=KwargRule[int](min=10, max=4096, default=2048, precision=0),
)
@classmethod

View File

@@ -64,10 +64,10 @@ class TongyiProvider(BaseModelProvider):
return ModelKwargsRules(
temperature=KwargRule[float](enabled=False),
top_p=KwargRule[float](min=0, max=1, default=0.8),
top_p=KwargRule[float](min=0, max=1, default=0.8, precision=2),
presence_penalty=KwargRule[float](enabled=False),
frequency_penalty=KwargRule[float](enabled=False),
max_tokens=KwargRule[int](min=10, max=model_max_tokens.get(model_name), default=1024),
max_tokens=KwargRule[int](min=10, max=model_max_tokens.get(model_name), default=1024, precision=0),
)
@classmethod

View File

@@ -63,8 +63,8 @@ class WenxinProvider(BaseModelProvider):
"""
if model_name in ['ernie-bot', 'ernie-bot-turbo']:
return ModelKwargsRules(
temperature=KwargRule[float](min=0.01, max=1, default=0.95),
top_p=KwargRule[float](min=0.01, max=1, default=0.8),
temperature=KwargRule[float](min=0.01, max=1, default=0.95, precision=2),
top_p=KwargRule[float](min=0.01, max=1, default=0.8, precision=2),
presence_penalty=KwargRule[float](enabled=False),
frequency_penalty=KwargRule[float](enabled=False),
max_tokens=KwargRule[int](enabled=False),

View File

@@ -53,27 +53,27 @@ class XinferenceProvider(BaseModelProvider):
credentials = self.get_model_credentials(model_name, model_type)
if credentials['model_format'] == "ggmlv3" and credentials["model_handle_type"] == "chatglm":
return ModelKwargsRules(
temperature=KwargRule[float](min=0.01, max=2, default=1),
top_p=KwargRule[float](min=0, max=1, default=0.7),
temperature=KwargRule[float](min=0.01, max=2, default=1, precision=2),
top_p=KwargRule[float](min=0, max=1, default=0.7, precision=2),
presence_penalty=KwargRule[float](enabled=False),
frequency_penalty=KwargRule[float](enabled=False),
max_tokens=KwargRule[int](min=10, max=4000, default=256),
max_tokens=KwargRule[int](min=10, max=4000, default=256, precision=0),
)
elif credentials['model_format'] == "ggmlv3":
return ModelKwargsRules(
temperature=KwargRule[float](min=0.01, max=2, default=1),
top_p=KwargRule[float](min=0, max=1, default=0.7),
presence_penalty=KwargRule[float](min=-2, max=2, default=0),
frequency_penalty=KwargRule[float](min=-2, max=2, default=0),
max_tokens=KwargRule[int](min=10, max=4000, default=256),
temperature=KwargRule[float](min=0.01, max=2, default=1, precision=2),
top_p=KwargRule[float](min=0, max=1, default=0.7, precision=2),
presence_penalty=KwargRule[float](min=-2, max=2, default=0, precision=2),
frequency_penalty=KwargRule[float](min=-2, max=2, default=0, precision=2),
max_tokens=KwargRule[int](min=10, max=4000, default=256, precision=0),
)
else:
return ModelKwargsRules(
temperature=KwargRule[float](min=0.01, max=2, default=1),
top_p=KwargRule[float](min=0, max=1, default=0.7),
temperature=KwargRule[float](min=0.01, max=2, default=1, precision=2),
top_p=KwargRule[float](min=0, max=1, default=0.7, precision=2),
presence_penalty=KwargRule[float](enabled=False),
frequency_penalty=KwargRule[float](enabled=False),
max_tokens=KwargRule[int](min=10, max=4000, default=256),
max_tokens=KwargRule[int](min=10, max=4000, default=256, precision=0),
)

View File

@@ -0,0 +1,176 @@
import json
from json import JSONDecodeError
from typing import Type
from langchain.schema import HumanMessage
from core.helper import encrypter
from core.model_providers.models.base import BaseProviderModel
from core.model_providers.models.embedding.zhipuai_embedding import ZhipuAIEmbedding
from core.model_providers.models.entity.model_params import ModelKwargsRules, KwargRule, ModelType
from core.model_providers.models.llm.zhipuai_model import ZhipuAIModel
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
from core.third_party.langchain.llms.zhipuai_llm import ZhipuAIChatLLM
from models.provider import ProviderType, ProviderQuotaType
class ZhipuAIProvider(BaseModelProvider):
@property
def provider_name(self):
"""
Returns the name of a provider.
"""
return 'zhipuai'
def _get_fixed_model_list(self, model_type: ModelType) -> list[dict]:
if model_type == ModelType.TEXT_GENERATION:
return [
{
'id': 'chatglm_pro',
'name': 'chatglm_pro',
},
{
'id': 'chatglm_std',
'name': 'chatglm_std',
},
{
'id': 'chatglm_lite',
'name': 'chatglm_lite',
},
{
'id': 'chatglm_lite_32k',
'name': 'chatglm_lite_32k',
}
]
elif model_type == ModelType.EMBEDDINGS:
return [
{
'id': 'text_embedding',
'name': 'text_embedding',
}
]
else:
return []
def get_model_class(self, model_type: ModelType) -> Type[BaseProviderModel]:
"""
Returns the model class.
:param model_type:
:return:
"""
if model_type == ModelType.TEXT_GENERATION:
model_class = ZhipuAIModel
elif model_type == ModelType.EMBEDDINGS:
model_class = ZhipuAIEmbedding
else:
raise NotImplementedError
return model_class
def get_model_parameter_rules(self, model_name: str, model_type: ModelType) -> ModelKwargsRules:
"""
get model parameter rules.
:param model_name:
:param model_type:
:return:
"""
return ModelKwargsRules(
temperature=KwargRule[float](min=0.01, max=1, default=0.95, precision=2),
top_p=KwargRule[float](min=0.1, max=0.9, default=0.8, precision=1),
presence_penalty=KwargRule[float](enabled=False),
frequency_penalty=KwargRule[float](enabled=False),
max_tokens=KwargRule[int](enabled=False),
)
@classmethod
def is_provider_credentials_valid_or_raise(cls, credentials: dict):
"""
Validates the given credentials.
"""
if 'api_key' not in credentials:
raise CredentialsValidateFailedError('ZhipuAI api_key must be provided.')
try:
credential_kwargs = {
'api_key': credentials['api_key']
}
llm = ZhipuAIChatLLM(
temperature=0.01,
**credential_kwargs
)
llm([HumanMessage(content='ping')])
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))
@classmethod
def encrypt_provider_credentials(cls, tenant_id: str, credentials: dict) -> dict:
credentials['api_key'] = encrypter.encrypt_token(tenant_id, credentials['api_key'])
return credentials
def get_provider_credentials(self, obfuscated: bool = False) -> dict:
if self.provider.provider_type == ProviderType.CUSTOM.value \
or (self.provider.provider_type == ProviderType.SYSTEM.value
and self.provider.quota_type == ProviderQuotaType.FREE.value):
try:
credentials = json.loads(self.provider.encrypted_config)
except JSONDecodeError:
credentials = {
'api_key': None,
}
if credentials['api_key']:
credentials['api_key'] = encrypter.decrypt_token(
self.provider.tenant_id,
credentials['api_key']
)
if obfuscated:
credentials['api_key'] = encrypter.obfuscated_token(credentials['api_key'])
return credentials
else:
return {}
def should_deduct_quota(self):
return True
@classmethod
def is_model_credentials_valid_or_raise(cls, model_name: str, model_type: ModelType, credentials: dict):
"""
check model credentials valid.
:param model_name:
:param model_type:
:param credentials:
"""
return
@classmethod
def encrypt_model_credentials(cls, tenant_id: str, model_name: str, model_type: ModelType,
credentials: dict) -> dict:
"""
encrypt model credentials for save.
:param tenant_id:
:param model_name:
:param model_type:
:param credentials:
:return:
"""
return {}
def get_model_credentials(self, model_name: str, model_type: ModelType, obfuscated: bool = False) -> dict:
"""
get credentials for llm use.
:param model_name:
:param model_type:
:param obfuscated:
:return:
"""
return self.get_provider_credentials(obfuscated)

View File

@@ -6,6 +6,7 @@
"tongyi",
"spark",
"wenxin",
"zhipuai",
"chatglm",
"replicate",
"huggingface_hub",

View File

@@ -0,0 +1,44 @@
{
"support_provider_types": [
"system",
"custom"
],
"system_config": {
"supported_quota_types": [
"free"
],
"quota_unit": "tokens"
},
"model_flexibility": "fixed",
"price_config": {
"chatglm_pro": {
"prompt": "0.01",
"completion": "0.01",
"unit": "0.001",
"currency": "RMB"
},
"chatglm_std": {
"prompt": "0.005",
"completion": "0.005",
"unit": "0.001",
"currency": "RMB"
},
"chatglm_lite": {
"prompt": "0.002",
"completion": "0.002",
"unit": "0.001",
"currency": "RMB"
},
"chatglm_lite_32k": {
"prompt": "0.0004",
"completion": "0.0004",
"unit": "0.001",
"currency": "RMB"
},
"text_embedding": {
"completion": "0",
"unit": "0.001",
"currency": "RMB"
}
}
}