mirror of
http://112.124.100.131/huang.ze/ebiz-dify-ai.git
synced 2025-12-24 10:13:01 +08:00
feat: claude api support (#572)
This commit is contained in:
@@ -40,6 +40,9 @@ class ProviderTokenNotInitError(Exception):
|
||||
"""
|
||||
description = "Provider Token Not Init"
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
self.description = args[0] if args else self.description
|
||||
|
||||
|
||||
class QuotaExceededError(Exception):
|
||||
"""
|
||||
|
||||
@@ -8,9 +8,10 @@ from core.llm.provider.base import BaseProvider
|
||||
from core.llm.provider.llm_provider_service import LLMProviderService
|
||||
from core.llm.streamable_azure_chat_open_ai import StreamableAzureChatOpenAI
|
||||
from core.llm.streamable_azure_open_ai import StreamableAzureOpenAI
|
||||
from core.llm.streamable_chat_anthropic import StreamableChatAnthropic
|
||||
from core.llm.streamable_chat_open_ai import StreamableChatOpenAI
|
||||
from core.llm.streamable_open_ai import StreamableOpenAI
|
||||
from models.provider import ProviderType
|
||||
from models.provider import ProviderType, ProviderName
|
||||
|
||||
|
||||
class LLMBuilder:
|
||||
@@ -32,43 +33,43 @@ class LLMBuilder:
|
||||
|
||||
@classmethod
|
||||
def to_llm(cls, tenant_id: str, model_name: str, **kwargs) -> Union[StreamableOpenAI, StreamableChatOpenAI]:
|
||||
provider = cls.get_default_provider(tenant_id)
|
||||
provider = cls.get_default_provider(tenant_id, model_name)
|
||||
|
||||
model_credentials = cls.get_model_credentials(tenant_id, provider, model_name)
|
||||
|
||||
llm_cls = None
|
||||
mode = cls.get_mode_by_model(model_name)
|
||||
if mode == 'chat':
|
||||
if provider == 'openai':
|
||||
if provider == ProviderName.OPENAI.value:
|
||||
llm_cls = StreamableChatOpenAI
|
||||
else:
|
||||
elif provider == ProviderName.AZURE_OPENAI.value:
|
||||
llm_cls = StreamableAzureChatOpenAI
|
||||
elif provider == ProviderName.ANTHROPIC.value:
|
||||
llm_cls = StreamableChatAnthropic
|
||||
elif mode == 'completion':
|
||||
if provider == 'openai':
|
||||
if provider == ProviderName.OPENAI.value:
|
||||
llm_cls = StreamableOpenAI
|
||||
else:
|
||||
elif provider == ProviderName.AZURE_OPENAI.value:
|
||||
llm_cls = StreamableAzureOpenAI
|
||||
else:
|
||||
|
||||
if not llm_cls:
|
||||
raise ValueError(f"model name {model_name} is not supported.")
|
||||
|
||||
|
||||
model_kwargs = {
|
||||
'model_name': model_name,
|
||||
'temperature': kwargs.get('temperature', 0),
|
||||
'max_tokens': kwargs.get('max_tokens', 256),
|
||||
'top_p': kwargs.get('top_p', 1),
|
||||
'frequency_penalty': kwargs.get('frequency_penalty', 0),
|
||||
'presence_penalty': kwargs.get('presence_penalty', 0),
|
||||
'callbacks': kwargs.get('callbacks', None),
|
||||
'streaming': kwargs.get('streaming', False),
|
||||
}
|
||||
|
||||
model_extras_kwargs = model_kwargs if mode == 'completion' else {'model_kwargs': model_kwargs}
|
||||
model_kwargs.update(model_credentials)
|
||||
model_kwargs = llm_cls.get_kwargs_from_model_params(model_kwargs)
|
||||
|
||||
return llm_cls(
|
||||
model_name=model_name,
|
||||
temperature=kwargs.get('temperature', 0),
|
||||
max_tokens=kwargs.get('max_tokens', 256),
|
||||
**model_extras_kwargs,
|
||||
callbacks=kwargs.get('callbacks', None),
|
||||
streaming=kwargs.get('streaming', False),
|
||||
# request_timeout=None
|
||||
**model_credentials
|
||||
)
|
||||
return llm_cls(**model_kwargs)
|
||||
|
||||
@classmethod
|
||||
def to_llm_from_model(cls, tenant_id: str, model: dict, streaming: bool = False,
|
||||
@@ -118,14 +119,29 @@ class LLMBuilder:
|
||||
return provider_service.get_credentials(model_name)
|
||||
|
||||
@classmethod
|
||||
def get_default_provider(cls, tenant_id: str) -> str:
|
||||
provider = BaseProvider.get_valid_provider(tenant_id)
|
||||
if not provider:
|
||||
raise ProviderTokenNotInitError()
|
||||
def get_default_provider(cls, tenant_id: str, model_name: str) -> str:
|
||||
provider_name = llm_constant.models[model_name]
|
||||
|
||||
if provider.provider_type == ProviderType.SYSTEM.value:
|
||||
provider_name = 'openai'
|
||||
else:
|
||||
provider_name = provider.provider_name
|
||||
if provider_name == 'openai':
|
||||
# get the default provider (openai / azure_openai) for the tenant
|
||||
openai_provider = BaseProvider.get_valid_provider(tenant_id, ProviderName.OPENAI.value)
|
||||
azure_openai_provider = BaseProvider.get_valid_provider(tenant_id, ProviderName.AZURE_OPENAI.value)
|
||||
|
||||
provider = None
|
||||
if openai_provider:
|
||||
provider = openai_provider
|
||||
elif azure_openai_provider:
|
||||
provider = azure_openai_provider
|
||||
|
||||
if not provider:
|
||||
raise ProviderTokenNotInitError(
|
||||
f"No valid {provider_name} model provider credentials found. "
|
||||
f"Please go to Settings -> Model Provider to complete your provider credentials."
|
||||
)
|
||||
|
||||
if provider.provider_type == ProviderType.SYSTEM.value:
|
||||
provider_name = 'openai'
|
||||
else:
|
||||
provider_name = provider.provider_name
|
||||
|
||||
return provider_name
|
||||
|
||||
@@ -1,23 +1,138 @@
|
||||
from typing import Optional
|
||||
import json
|
||||
import logging
|
||||
from typing import Optional, Union
|
||||
|
||||
import anthropic
|
||||
from langchain.chat_models import ChatAnthropic
|
||||
from langchain.schema import HumanMessage
|
||||
|
||||
from core import hosted_llm_credentials
|
||||
from core.llm.error import ProviderTokenNotInitError
|
||||
from core.llm.provider.base import BaseProvider
|
||||
from models.provider import ProviderName
|
||||
from core.llm.provider.errors import ValidateFailedError
|
||||
from models.provider import ProviderName, ProviderType
|
||||
|
||||
|
||||
class AnthropicProvider(BaseProvider):
|
||||
def get_models(self, model_id: Optional[str] = None) -> list[dict]:
|
||||
credentials = self.get_credentials(model_id)
|
||||
# todo
|
||||
return []
|
||||
return [
|
||||
{
|
||||
'id': 'claude-instant-1',
|
||||
'name': 'claude-instant-1',
|
||||
},
|
||||
{
|
||||
'id': 'claude-2',
|
||||
'name': 'claude-2',
|
||||
},
|
||||
]
|
||||
|
||||
def get_credentials(self, model_id: Optional[str] = None) -> dict:
|
||||
"""
|
||||
Returns the API credentials for Azure OpenAI as a dictionary, for the given tenant_id.
|
||||
The dictionary contains keys: azure_api_type, azure_api_version, azure_api_base, and azure_api_key.
|
||||
"""
|
||||
return {
|
||||
'anthropic_api_key': self.get_provider_api_key(model_id=model_id)
|
||||
}
|
||||
return self.get_provider_api_key(model_id=model_id)
|
||||
|
||||
def get_provider_name(self):
|
||||
return ProviderName.ANTHROPIC
|
||||
return ProviderName.ANTHROPIC
|
||||
|
||||
def get_provider_configs(self, obfuscated: bool = False, only_custom: bool = False) -> Union[str | dict]:
|
||||
"""
|
||||
Returns the provider configs.
|
||||
"""
|
||||
try:
|
||||
config = self.get_provider_api_key(only_custom=only_custom)
|
||||
except:
|
||||
config = {
|
||||
'anthropic_api_key': ''
|
||||
}
|
||||
|
||||
if obfuscated:
|
||||
if not config.get('anthropic_api_key'):
|
||||
config = {
|
||||
'anthropic_api_key': ''
|
||||
}
|
||||
|
||||
config['anthropic_api_key'] = self.obfuscated_token(config.get('anthropic_api_key'))
|
||||
return config
|
||||
|
||||
return config
|
||||
|
||||
def get_encrypted_token(self, config: Union[dict | str]):
|
||||
"""
|
||||
Returns the encrypted token.
|
||||
"""
|
||||
return json.dumps({
|
||||
'anthropic_api_key': self.encrypt_token(config['anthropic_api_key'])
|
||||
})
|
||||
|
||||
def get_decrypted_token(self, token: str):
|
||||
"""
|
||||
Returns the decrypted token.
|
||||
"""
|
||||
config = json.loads(token)
|
||||
config['anthropic_api_key'] = self.decrypt_token(config['anthropic_api_key'])
|
||||
return config
|
||||
|
||||
def get_token_type(self):
|
||||
return dict
|
||||
|
||||
def config_validate(self, config: Union[dict | str]):
|
||||
"""
|
||||
Validates the given config.
|
||||
"""
|
||||
# check OpenAI / Azure OpenAI credential is valid
|
||||
openai_provider = BaseProvider.get_valid_provider(self.tenant_id, ProviderName.OPENAI.value)
|
||||
azure_openai_provider = BaseProvider.get_valid_provider(self.tenant_id, ProviderName.AZURE_OPENAI.value)
|
||||
|
||||
provider = None
|
||||
if openai_provider:
|
||||
provider = openai_provider
|
||||
elif azure_openai_provider:
|
||||
provider = azure_openai_provider
|
||||
|
||||
if not provider:
|
||||
raise ValidateFailedError(f"OpenAI or Azure OpenAI provider must be configured first.")
|
||||
|
||||
if provider.provider_type == ProviderType.SYSTEM.value:
|
||||
quota_used = provider.quota_used if provider.quota_used is not None else 0
|
||||
quota_limit = provider.quota_limit if provider.quota_limit is not None else 0
|
||||
if quota_used >= quota_limit:
|
||||
raise ValidateFailedError(f"Your quota for Dify Hosted OpenAI has been exhausted, "
|
||||
f"please configure OpenAI or Azure OpenAI provider first.")
|
||||
|
||||
try:
|
||||
if not isinstance(config, dict):
|
||||
raise ValueError('Config must be a object.')
|
||||
|
||||
if 'anthropic_api_key' not in config:
|
||||
raise ValueError('anthropic_api_key must be provided.')
|
||||
|
||||
chat_llm = ChatAnthropic(
|
||||
model='claude-instant-1',
|
||||
anthropic_api_key=config['anthropic_api_key'],
|
||||
max_tokens_to_sample=10,
|
||||
temperature=0,
|
||||
default_request_timeout=60
|
||||
)
|
||||
|
||||
messages = [
|
||||
HumanMessage(
|
||||
content="ping"
|
||||
)
|
||||
]
|
||||
|
||||
chat_llm(messages)
|
||||
except anthropic.APIConnectionError as ex:
|
||||
raise ValidateFailedError(f"Anthropic: Connection error, cause: {ex.__cause__}")
|
||||
except (anthropic.APIStatusError, anthropic.RateLimitError) as ex:
|
||||
raise ValidateFailedError(f"Anthropic: Error code: {ex.status_code} - "
|
||||
f"{ex.body['error']['type']}: {ex.body['error']['message']}")
|
||||
except Exception as ex:
|
||||
logging.exception('Anthropic config validation failed')
|
||||
raise ex
|
||||
|
||||
def get_hosted_credentials(self) -> Union[str | dict]:
|
||||
if not hosted_llm_credentials.anthropic or not hosted_llm_credentials.anthropic.api_key:
|
||||
raise ProviderTokenNotInitError(
|
||||
f"No valid {self.get_provider_name().value} model provider credentials found. "
|
||||
f"Please go to Settings -> Model Provider to complete your provider credentials."
|
||||
)
|
||||
|
||||
return {'anthropic_api_key': hosted_llm_credentials.anthropic.api_key}
|
||||
|
||||
@@ -52,12 +52,12 @@ class AzureProvider(BaseProvider):
|
||||
def get_provider_name(self):
|
||||
return ProviderName.AZURE_OPENAI
|
||||
|
||||
def get_provider_configs(self, obfuscated: bool = False) -> Union[str | dict]:
|
||||
def get_provider_configs(self, obfuscated: bool = False, only_custom: bool = False) -> Union[str | dict]:
|
||||
"""
|
||||
Returns the provider configs.
|
||||
"""
|
||||
try:
|
||||
config = self.get_provider_api_key()
|
||||
config = self.get_provider_api_key(only_custom=only_custom)
|
||||
except:
|
||||
config = {
|
||||
'openai_api_type': 'azure',
|
||||
@@ -81,7 +81,6 @@ class AzureProvider(BaseProvider):
|
||||
return config
|
||||
|
||||
def get_token_type(self):
|
||||
# TODO: change to dict when implemented
|
||||
return dict
|
||||
|
||||
def config_validate(self, config: Union[dict | str]):
|
||||
|
||||
@@ -2,7 +2,7 @@ import base64
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Optional, Union
|
||||
|
||||
from core import hosted_llm_credentials
|
||||
from core.constant import llm_constant
|
||||
from core.llm.error import QuotaExceededError, ModelCurrentlyNotSupportError, ProviderTokenNotInitError
|
||||
from extensions.ext_database import db
|
||||
from libs import rsa
|
||||
@@ -14,15 +14,18 @@ class BaseProvider(ABC):
|
||||
def __init__(self, tenant_id: str):
|
||||
self.tenant_id = tenant_id
|
||||
|
||||
def get_provider_api_key(self, model_id: Optional[str] = None, prefer_custom: bool = True) -> Union[str | dict]:
|
||||
def get_provider_api_key(self, model_id: Optional[str] = None, only_custom: bool = False) -> Union[str | dict]:
|
||||
"""
|
||||
Returns the decrypted API key for the given tenant_id and provider_name.
|
||||
If the provider is of type SYSTEM and the quota is exceeded, raises a QuotaExceededError.
|
||||
If the provider is not found or not valid, raises a ProviderTokenNotInitError.
|
||||
"""
|
||||
provider = self.get_provider(prefer_custom)
|
||||
provider = self.get_provider(only_custom)
|
||||
if not provider:
|
||||
raise ProviderTokenNotInitError()
|
||||
raise ProviderTokenNotInitError(
|
||||
f"No valid {llm_constant.models[model_id]} model provider credentials found. "
|
||||
f"Please go to Settings -> Model Provider to complete your provider credentials."
|
||||
)
|
||||
|
||||
if provider.provider_type == ProviderType.SYSTEM.value:
|
||||
quota_used = provider.quota_used if provider.quota_used is not None else 0
|
||||
@@ -38,18 +41,19 @@ class BaseProvider(ABC):
|
||||
else:
|
||||
return self.get_decrypted_token(provider.encrypted_config)
|
||||
|
||||
def get_provider(self, prefer_custom: bool) -> Optional[Provider]:
|
||||
def get_provider(self, only_custom: bool = False) -> Optional[Provider]:
|
||||
"""
|
||||
Returns the Provider instance for the given tenant_id and provider_name.
|
||||
If both CUSTOM and System providers exist, the preferred provider will be returned based on the prefer_custom flag.
|
||||
"""
|
||||
return BaseProvider.get_valid_provider(self.tenant_id, self.get_provider_name().value, prefer_custom)
|
||||
return BaseProvider.get_valid_provider(self.tenant_id, self.get_provider_name().value, only_custom)
|
||||
|
||||
@classmethod
|
||||
def get_valid_provider(cls, tenant_id: str, provider_name: str = None, prefer_custom: bool = False) -> Optional[Provider]:
|
||||
def get_valid_provider(cls, tenant_id: str, provider_name: str = None, only_custom: bool = False) -> Optional[
|
||||
Provider]:
|
||||
"""
|
||||
Returns the Provider instance for the given tenant_id and provider_name.
|
||||
If both CUSTOM and System providers exist, the preferred provider will be returned based on the prefer_custom flag.
|
||||
If both CUSTOM and System providers exist.
|
||||
"""
|
||||
query = db.session.query(Provider).filter(
|
||||
Provider.tenant_id == tenant_id
|
||||
@@ -58,39 +62,31 @@ class BaseProvider(ABC):
|
||||
if provider_name:
|
||||
query = query.filter(Provider.provider_name == provider_name)
|
||||
|
||||
providers = query.order_by(Provider.provider_type.desc() if prefer_custom else Provider.provider_type).all()
|
||||
if only_custom:
|
||||
query = query.filter(Provider.provider_type == ProviderType.CUSTOM.value)
|
||||
|
||||
custom_provider = None
|
||||
system_provider = None
|
||||
providers = query.order_by(Provider.provider_type.asc()).all()
|
||||
|
||||
for provider in providers:
|
||||
if provider.provider_type == ProviderType.CUSTOM.value and provider.is_valid and provider.encrypted_config:
|
||||
custom_provider = provider
|
||||
return provider
|
||||
elif provider.provider_type == ProviderType.SYSTEM.value and provider.is_valid:
|
||||
system_provider = provider
|
||||
return provider
|
||||
|
||||
if custom_provider:
|
||||
return custom_provider
|
||||
elif system_provider:
|
||||
return system_provider
|
||||
else:
|
||||
return None
|
||||
return None
|
||||
|
||||
def get_hosted_credentials(self) -> str:
|
||||
if self.get_provider_name() != ProviderName.OPENAI:
|
||||
raise ProviderTokenNotInitError()
|
||||
def get_hosted_credentials(self) -> Union[str | dict]:
|
||||
raise ProviderTokenNotInitError(
|
||||
f"No valid {self.get_provider_name().value} model provider credentials found. "
|
||||
f"Please go to Settings -> Model Provider to complete your provider credentials."
|
||||
)
|
||||
|
||||
if not hosted_llm_credentials.openai or not hosted_llm_credentials.openai.api_key:
|
||||
raise ProviderTokenNotInitError()
|
||||
|
||||
return hosted_llm_credentials.openai.api_key
|
||||
|
||||
def get_provider_configs(self, obfuscated: bool = False) -> Union[str | dict]:
|
||||
def get_provider_configs(self, obfuscated: bool = False, only_custom: bool = False) -> Union[str | dict]:
|
||||
"""
|
||||
Returns the provider configs.
|
||||
"""
|
||||
try:
|
||||
config = self.get_provider_api_key()
|
||||
config = self.get_provider_api_key(only_custom=only_custom)
|
||||
except:
|
||||
config = ''
|
||||
|
||||
|
||||
@@ -31,11 +31,11 @@ class LLMProviderService:
|
||||
def get_credentials(self, model_id: Optional[str] = None) -> dict:
|
||||
return self.provider.get_credentials(model_id)
|
||||
|
||||
def get_provider_configs(self, obfuscated: bool = False) -> Union[str | dict]:
|
||||
return self.provider.get_provider_configs(obfuscated)
|
||||
def get_provider_configs(self, obfuscated: bool = False, only_custom: bool = False) -> Union[str | dict]:
|
||||
return self.provider.get_provider_configs(obfuscated=obfuscated, only_custom=only_custom)
|
||||
|
||||
def get_provider_db_record(self, prefer_custom: bool = False) -> Optional[Provider]:
|
||||
return self.provider.get_provider(prefer_custom)
|
||||
def get_provider_db_record(self) -> Optional[Provider]:
|
||||
return self.provider.get_provider()
|
||||
|
||||
def config_validate(self, config: Union[dict | str]):
|
||||
"""
|
||||
|
||||
@@ -4,6 +4,8 @@ from typing import Optional, Union
|
||||
import openai
|
||||
from openai.error import AuthenticationError, OpenAIError
|
||||
|
||||
from core import hosted_llm_credentials
|
||||
from core.llm.error import ProviderTokenNotInitError
|
||||
from core.llm.moderation import Moderation
|
||||
from core.llm.provider.base import BaseProvider
|
||||
from core.llm.provider.errors import ValidateFailedError
|
||||
@@ -42,3 +44,12 @@ class OpenAIProvider(BaseProvider):
|
||||
except Exception as ex:
|
||||
logging.exception('OpenAI config validation failed')
|
||||
raise ex
|
||||
|
||||
def get_hosted_credentials(self) -> Union[str | dict]:
|
||||
if not hosted_llm_credentials.openai or not hosted_llm_credentials.openai.api_key:
|
||||
raise ProviderTokenNotInitError(
|
||||
f"No valid {self.get_provider_name().value} model provider credentials found. "
|
||||
f"Please go to Settings -> Model Provider to complete your provider credentials."
|
||||
)
|
||||
|
||||
return hosted_llm_credentials.openai.api_key
|
||||
|
||||
@@ -1,11 +1,11 @@
|
||||
from langchain.callbacks.manager import CallbackManagerForLLMRun, AsyncCallbackManagerForLLMRun, Callbacks
|
||||
from langchain.schema import BaseMessage, ChatResult, LLMResult
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.schema import BaseMessage, LLMResult
|
||||
from langchain.chat_models import AzureChatOpenAI
|
||||
from typing import Optional, List, Dict, Any
|
||||
|
||||
from pydantic import root_validator
|
||||
|
||||
from core.llm.error_handle_wraps import handle_llm_exceptions, handle_llm_exceptions_async
|
||||
from core.llm.wrappers.openai_wrapper import handle_openai_exceptions
|
||||
|
||||
|
||||
class StreamableAzureChatOpenAI(AzureChatOpenAI):
|
||||
@@ -46,30 +46,7 @@ class StreamableAzureChatOpenAI(AzureChatOpenAI):
|
||||
"organization": self.openai_organization if self.openai_organization else None,
|
||||
}
|
||||
|
||||
def get_messages_tokens(self, messages: List[BaseMessage]) -> int:
|
||||
"""Get the number of tokens in a list of messages.
|
||||
|
||||
Args:
|
||||
messages: The messages to count the tokens of.
|
||||
|
||||
Returns:
|
||||
The number of tokens in the messages.
|
||||
"""
|
||||
tokens_per_message = 5
|
||||
tokens_per_request = 3
|
||||
|
||||
message_tokens = tokens_per_request
|
||||
message_strs = ''
|
||||
for message in messages:
|
||||
message_strs += message.content
|
||||
message_tokens += tokens_per_message
|
||||
|
||||
# calc once
|
||||
message_tokens += self.get_num_tokens(message_strs)
|
||||
|
||||
return message_tokens
|
||||
|
||||
@handle_llm_exceptions
|
||||
@handle_openai_exceptions
|
||||
def generate(
|
||||
self,
|
||||
messages: List[List[BaseMessage]],
|
||||
@@ -79,12 +56,18 @@ class StreamableAzureChatOpenAI(AzureChatOpenAI):
|
||||
) -> LLMResult:
|
||||
return super().generate(messages, stop, callbacks, **kwargs)
|
||||
|
||||
@handle_llm_exceptions_async
|
||||
async def agenerate(
|
||||
self,
|
||||
messages: List[List[BaseMessage]],
|
||||
stop: Optional[List[str]] = None,
|
||||
callbacks: Callbacks = None,
|
||||
**kwargs: Any,
|
||||
) -> LLMResult:
|
||||
return await super().agenerate(messages, stop, callbacks, **kwargs)
|
||||
@classmethod
|
||||
def get_kwargs_from_model_params(cls, params: dict):
|
||||
model_kwargs = {
|
||||
'top_p': params.get('top_p', 1),
|
||||
'frequency_penalty': params.get('frequency_penalty', 0),
|
||||
'presence_penalty': params.get('presence_penalty', 0),
|
||||
}
|
||||
|
||||
del params['top_p']
|
||||
del params['frequency_penalty']
|
||||
del params['presence_penalty']
|
||||
|
||||
params['model_kwargs'] = model_kwargs
|
||||
|
||||
return params
|
||||
|
||||
@@ -5,7 +5,7 @@ from typing import Optional, List, Dict, Mapping, Any
|
||||
|
||||
from pydantic import root_validator
|
||||
|
||||
from core.llm.error_handle_wraps import handle_llm_exceptions, handle_llm_exceptions_async
|
||||
from core.llm.wrappers.openai_wrapper import handle_openai_exceptions
|
||||
|
||||
|
||||
class StreamableAzureOpenAI(AzureOpenAI):
|
||||
@@ -50,7 +50,7 @@ class StreamableAzureOpenAI(AzureOpenAI):
|
||||
"organization": self.openai_organization if self.openai_organization else None,
|
||||
}}
|
||||
|
||||
@handle_llm_exceptions
|
||||
@handle_openai_exceptions
|
||||
def generate(
|
||||
self,
|
||||
prompts: List[str],
|
||||
@@ -60,12 +60,6 @@ class StreamableAzureOpenAI(AzureOpenAI):
|
||||
) -> LLMResult:
|
||||
return super().generate(prompts, stop, callbacks, **kwargs)
|
||||
|
||||
@handle_llm_exceptions_async
|
||||
async def agenerate(
|
||||
self,
|
||||
prompts: List[str],
|
||||
stop: Optional[List[str]] = None,
|
||||
callbacks: Callbacks = None,
|
||||
**kwargs: Any,
|
||||
) -> LLMResult:
|
||||
return await super().agenerate(prompts, stop, callbacks, **kwargs)
|
||||
@classmethod
|
||||
def get_kwargs_from_model_params(cls, params: dict):
|
||||
return params
|
||||
|
||||
39
api/core/llm/streamable_chat_anthropic.py
Normal file
39
api/core/llm/streamable_chat_anthropic.py
Normal file
@@ -0,0 +1,39 @@
|
||||
from typing import List, Optional, Any, Dict
|
||||
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.chat_models import ChatAnthropic
|
||||
from langchain.schema import BaseMessage, LLMResult
|
||||
|
||||
from core.llm.wrappers.anthropic_wrapper import handle_anthropic_exceptions
|
||||
|
||||
|
||||
class StreamableChatAnthropic(ChatAnthropic):
|
||||
"""
|
||||
Wrapper around Anthropic's large language model.
|
||||
"""
|
||||
|
||||
@handle_anthropic_exceptions
|
||||
def generate(
|
||||
self,
|
||||
messages: List[List[BaseMessage]],
|
||||
stop: Optional[List[str]] = None,
|
||||
callbacks: Callbacks = None,
|
||||
*,
|
||||
tags: Optional[List[str]] = None,
|
||||
metadata: Optional[Dict[str, Any]] = None,
|
||||
**kwargs: Any,
|
||||
) -> LLMResult:
|
||||
return super().generate(messages, stop, callbacks, tags=tags, metadata=metadata, **kwargs)
|
||||
|
||||
@classmethod
|
||||
def get_kwargs_from_model_params(cls, params: dict):
|
||||
params['model'] = params.get('model_name')
|
||||
del params['model_name']
|
||||
|
||||
params['max_tokens_to_sample'] = params.get('max_tokens')
|
||||
del params['max_tokens']
|
||||
|
||||
del params['frequency_penalty']
|
||||
del params['presence_penalty']
|
||||
|
||||
return params
|
||||
@@ -7,7 +7,7 @@ from typing import Optional, List, Dict, Any
|
||||
|
||||
from pydantic import root_validator
|
||||
|
||||
from core.llm.error_handle_wraps import handle_llm_exceptions, handle_llm_exceptions_async
|
||||
from core.llm.wrappers.openai_wrapper import handle_openai_exceptions
|
||||
|
||||
|
||||
class StreamableChatOpenAI(ChatOpenAI):
|
||||
@@ -48,30 +48,7 @@ class StreamableChatOpenAI(ChatOpenAI):
|
||||
"organization": self.openai_organization if self.openai_organization else None,
|
||||
}
|
||||
|
||||
def get_messages_tokens(self, messages: List[BaseMessage]) -> int:
|
||||
"""Get the number of tokens in a list of messages.
|
||||
|
||||
Args:
|
||||
messages: The messages to count the tokens of.
|
||||
|
||||
Returns:
|
||||
The number of tokens in the messages.
|
||||
"""
|
||||
tokens_per_message = 5
|
||||
tokens_per_request = 3
|
||||
|
||||
message_tokens = tokens_per_request
|
||||
message_strs = ''
|
||||
for message in messages:
|
||||
message_strs += message.content
|
||||
message_tokens += tokens_per_message
|
||||
|
||||
# calc once
|
||||
message_tokens += self.get_num_tokens(message_strs)
|
||||
|
||||
return message_tokens
|
||||
|
||||
@handle_llm_exceptions
|
||||
@handle_openai_exceptions
|
||||
def generate(
|
||||
self,
|
||||
messages: List[List[BaseMessage]],
|
||||
@@ -81,12 +58,18 @@ class StreamableChatOpenAI(ChatOpenAI):
|
||||
) -> LLMResult:
|
||||
return super().generate(messages, stop, callbacks, **kwargs)
|
||||
|
||||
@handle_llm_exceptions_async
|
||||
async def agenerate(
|
||||
self,
|
||||
messages: List[List[BaseMessage]],
|
||||
stop: Optional[List[str]] = None,
|
||||
callbacks: Callbacks = None,
|
||||
**kwargs: Any,
|
||||
) -> LLMResult:
|
||||
return await super().agenerate(messages, stop, callbacks, **kwargs)
|
||||
@classmethod
|
||||
def get_kwargs_from_model_params(cls, params: dict):
|
||||
model_kwargs = {
|
||||
'top_p': params.get('top_p', 1),
|
||||
'frequency_penalty': params.get('frequency_penalty', 0),
|
||||
'presence_penalty': params.get('presence_penalty', 0),
|
||||
}
|
||||
|
||||
del params['top_p']
|
||||
del params['frequency_penalty']
|
||||
del params['presence_penalty']
|
||||
|
||||
params['model_kwargs'] = model_kwargs
|
||||
|
||||
return params
|
||||
|
||||
@@ -6,7 +6,7 @@ from typing import Optional, List, Dict, Any, Mapping
|
||||
from langchain import OpenAI
|
||||
from pydantic import root_validator
|
||||
|
||||
from core.llm.error_handle_wraps import handle_llm_exceptions, handle_llm_exceptions_async
|
||||
from core.llm.wrappers.openai_wrapper import handle_openai_exceptions
|
||||
|
||||
|
||||
class StreamableOpenAI(OpenAI):
|
||||
@@ -49,7 +49,7 @@ class StreamableOpenAI(OpenAI):
|
||||
"organization": self.openai_organization if self.openai_organization else None,
|
||||
}}
|
||||
|
||||
@handle_llm_exceptions
|
||||
@handle_openai_exceptions
|
||||
def generate(
|
||||
self,
|
||||
prompts: List[str],
|
||||
@@ -59,12 +59,6 @@ class StreamableOpenAI(OpenAI):
|
||||
) -> LLMResult:
|
||||
return super().generate(prompts, stop, callbacks, **kwargs)
|
||||
|
||||
@handle_llm_exceptions_async
|
||||
async def agenerate(
|
||||
self,
|
||||
prompts: List[str],
|
||||
stop: Optional[List[str]] = None,
|
||||
callbacks: Callbacks = None,
|
||||
**kwargs: Any,
|
||||
) -> LLMResult:
|
||||
return await super().agenerate(prompts, stop, callbacks, **kwargs)
|
||||
@classmethod
|
||||
def get_kwargs_from_model_params(cls, params: dict):
|
||||
return params
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import openai
|
||||
|
||||
from core.llm.wrappers.openai_wrapper import handle_openai_exceptions
|
||||
from models.provider import ProviderName
|
||||
from core.llm.error_handle_wraps import handle_llm_exceptions
|
||||
from core.llm.provider.base import BaseProvider
|
||||
|
||||
|
||||
@@ -13,7 +14,7 @@ class Whisper:
|
||||
self.client = openai.Audio
|
||||
self.credentials = provider.get_credentials()
|
||||
|
||||
@handle_llm_exceptions
|
||||
@handle_openai_exceptions
|
||||
def transcribe(self, file):
|
||||
return self.client.transcribe(
|
||||
model='whisper-1',
|
||||
|
||||
27
api/core/llm/wrappers/anthropic_wrapper.py
Normal file
27
api/core/llm/wrappers/anthropic_wrapper.py
Normal file
@@ -0,0 +1,27 @@
|
||||
import logging
|
||||
from functools import wraps
|
||||
|
||||
import anthropic
|
||||
|
||||
from core.llm.error import LLMAPIConnectionError, LLMAPIUnavailableError, LLMRateLimitError, LLMAuthorizationError, \
|
||||
LLMBadRequestError
|
||||
|
||||
|
||||
def handle_anthropic_exceptions(func):
|
||||
@wraps(func)
|
||||
def wrapper(*args, **kwargs):
|
||||
try:
|
||||
return func(*args, **kwargs)
|
||||
except anthropic.APIConnectionError as e:
|
||||
logging.exception("Failed to connect to Anthropic API.")
|
||||
raise LLMAPIConnectionError(f"Anthropic: The server could not be reached, cause: {e.__cause__}")
|
||||
except anthropic.RateLimitError:
|
||||
raise LLMRateLimitError("Anthropic: A 429 status code was received; we should back off a bit.")
|
||||
except anthropic.AuthenticationError as e:
|
||||
raise LLMAuthorizationError(f"Anthropic: {e.message}")
|
||||
except anthropic.BadRequestError as e:
|
||||
raise LLMBadRequestError(f"Anthropic: {e.message}")
|
||||
except anthropic.APIStatusError as e:
|
||||
raise LLMAPIUnavailableError(f"Anthropic: code: {e.status_code}, cause: {e.message}")
|
||||
|
||||
return wrapper
|
||||
@@ -7,7 +7,7 @@ from core.llm.error import LLMAPIConnectionError, LLMAPIUnavailableError, LLMRat
|
||||
LLMBadRequestError
|
||||
|
||||
|
||||
def handle_llm_exceptions(func):
|
||||
def handle_openai_exceptions(func):
|
||||
@wraps(func)
|
||||
def wrapper(*args, **kwargs):
|
||||
try:
|
||||
@@ -29,27 +29,3 @@ def handle_llm_exceptions(func):
|
||||
raise LLMBadRequestError(e.__class__.__name__ + ":" + str(e))
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
def handle_llm_exceptions_async(func):
|
||||
@wraps(func)
|
||||
async def wrapper(*args, **kwargs):
|
||||
try:
|
||||
return await func(*args, **kwargs)
|
||||
except openai.error.InvalidRequestError as e:
|
||||
logging.exception("Invalid request to OpenAI API.")
|
||||
raise LLMBadRequestError(str(e))
|
||||
except openai.error.APIConnectionError as e:
|
||||
logging.exception("Failed to connect to OpenAI API.")
|
||||
raise LLMAPIConnectionError(e.__class__.__name__ + ":" + str(e))
|
||||
except (openai.error.APIError, openai.error.ServiceUnavailableError, openai.error.Timeout) as e:
|
||||
logging.exception("OpenAI service unavailable.")
|
||||
raise LLMAPIUnavailableError(e.__class__.__name__ + ":" + str(e))
|
||||
except openai.error.RateLimitError as e:
|
||||
raise LLMRateLimitError(str(e))
|
||||
except openai.error.AuthenticationError as e:
|
||||
raise LLMAuthorizationError(str(e))
|
||||
except openai.error.OpenAIError as e:
|
||||
raise LLMBadRequestError(e.__class__.__name__ + ":" + str(e))
|
||||
|
||||
return wrapper
|
||||
Reference in New Issue
Block a user