mirror of
http://112.124.100.131/huang.ze/ebiz-dify-ai.git
synced 2025-12-24 02:03:02 +08:00
@@ -1,21 +1,18 @@
|
||||
import logging
|
||||
import threading
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
from flask import current_app
|
||||
from langchain.embeddings.base import Embeddings
|
||||
from langchain.schema import Document
|
||||
from sklearn.manifold import TSNE
|
||||
|
||||
from core.embedding.cached_embedding import CacheEmbedding
|
||||
from core.model_manager import ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.rerank.rerank import RerankRunner
|
||||
from core.rag.datasource.entity.embedding import Embeddings
|
||||
from core.rag.datasource.retrieval_service import RetrievalService
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_database import db
|
||||
from models.account import Account
|
||||
from models.dataset import Dataset, DatasetQuery, DocumentSegment
|
||||
from services.retrieval_service import RetrievalService
|
||||
|
||||
default_retrieval_model = {
|
||||
'search_method': 'semantic_search',
|
||||
@@ -28,6 +25,7 @@ default_retrieval_model = {
|
||||
'score_threshold_enabled': False
|
||||
}
|
||||
|
||||
|
||||
class HitTestingService:
|
||||
@classmethod
|
||||
def retrieve(cls, dataset: Dataset, query: str, account: Account, retrieval_model: dict, limit: int = 10) -> dict:
|
||||
@@ -57,61 +55,15 @@ class HitTestingService:
|
||||
|
||||
embeddings = CacheEmbedding(embedding_model)
|
||||
|
||||
all_documents = []
|
||||
threads = []
|
||||
|
||||
# retrieval_model source with semantic
|
||||
if retrieval_model['search_method'] == 'semantic_search' or retrieval_model['search_method'] == 'hybrid_search':
|
||||
embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
|
||||
'flask_app': current_app._get_current_object(),
|
||||
'dataset_id': str(dataset.id),
|
||||
'query': query,
|
||||
'top_k': retrieval_model['top_k'],
|
||||
'score_threshold': retrieval_model['score_threshold'] if retrieval_model['score_threshold_enabled'] else None,
|
||||
'reranking_model': retrieval_model['reranking_model'] if retrieval_model['reranking_enable'] else None,
|
||||
'all_documents': all_documents,
|
||||
'search_method': retrieval_model['search_method'],
|
||||
'embeddings': embeddings
|
||||
})
|
||||
threads.append(embedding_thread)
|
||||
embedding_thread.start()
|
||||
|
||||
# retrieval source with full text
|
||||
if retrieval_model['search_method'] == 'full_text_search' or retrieval_model['search_method'] == 'hybrid_search':
|
||||
full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search, kwargs={
|
||||
'flask_app': current_app._get_current_object(),
|
||||
'dataset_id': str(dataset.id),
|
||||
'query': query,
|
||||
'search_method': retrieval_model['search_method'],
|
||||
'embeddings': embeddings,
|
||||
'score_threshold': retrieval_model['score_threshold'] if retrieval_model['score_threshold_enabled'] else None,
|
||||
'top_k': retrieval_model['top_k'],
|
||||
'reranking_model': retrieval_model['reranking_model'] if retrieval_model['reranking_enable'] else None,
|
||||
'all_documents': all_documents
|
||||
})
|
||||
threads.append(full_text_index_thread)
|
||||
full_text_index_thread.start()
|
||||
|
||||
for thread in threads:
|
||||
thread.join()
|
||||
|
||||
if retrieval_model['search_method'] == 'hybrid_search':
|
||||
model_manager = ModelManager()
|
||||
rerank_model_instance = model_manager.get_model_instance(
|
||||
tenant_id=dataset.tenant_id,
|
||||
provider=retrieval_model['reranking_model']['reranking_provider_name'],
|
||||
model_type=ModelType.RERANK,
|
||||
model=retrieval_model['reranking_model']['reranking_model_name']
|
||||
)
|
||||
|
||||
rerank_runner = RerankRunner(rerank_model_instance)
|
||||
all_documents = rerank_runner.run(
|
||||
query=query,
|
||||
documents=all_documents,
|
||||
score_threshold=retrieval_model['score_threshold'] if retrieval_model['score_threshold_enabled'] else None,
|
||||
top_n=retrieval_model['top_k'],
|
||||
user=f"account-{account.id}"
|
||||
)
|
||||
all_documents = RetrievalService.retrieve(retrival_method=retrieval_model['search_method'],
|
||||
dataset_id=dataset.id,
|
||||
query=query,
|
||||
top_k=retrieval_model['top_k'],
|
||||
score_threshold=retrieval_model['score_threshold']
|
||||
if retrieval_model['score_threshold_enabled'] else None,
|
||||
reranking_model=retrieval_model['reranking_model']
|
||||
if retrieval_model['reranking_enable'] else None
|
||||
)
|
||||
|
||||
end = time.perf_counter()
|
||||
logging.debug(f"Hit testing retrieve in {end - start:0.4f} seconds")
|
||||
@@ -203,4 +155,3 @@ class HitTestingService:
|
||||
|
||||
if not query or len(query) > 250:
|
||||
raise ValueError('Query is required and cannot exceed 250 characters')
|
||||
|
||||
|
||||
Reference in New Issue
Block a user