Feat/dify rag (#2528)

Co-authored-by: jyong <jyong@dify.ai>
This commit is contained in:
Jyong
2024-02-22 23:31:57 +08:00
committed by GitHub
parent 97fe817186
commit 6c4e6bf1d6
119 changed files with 3181 additions and 5892 deletions

View File

@@ -0,0 +1,61 @@
import logging
import os
from core.rag.extractor.extractor_base import BaseExtractor
from core.rag.models.document import Document
logger = logging.getLogger(__name__)
class UnstructuredWordExtractor(BaseExtractor):
"""Loader that uses unstructured to load word documents.
"""
def __init__(
self,
file_path: str,
api_url: str,
):
"""Initialize with file path."""
self._file_path = file_path
self._api_url = api_url
def extract(self) -> list[Document]:
from unstructured.__version__ import __version__ as __unstructured_version__
from unstructured.file_utils.filetype import FileType, detect_filetype
unstructured_version = tuple(
[int(x) for x in __unstructured_version__.split(".")]
)
# check the file extension
try:
import magic # noqa: F401
is_doc = detect_filetype(self._file_path) == FileType.DOC
except ImportError:
_, extension = os.path.splitext(str(self._file_path))
is_doc = extension == ".doc"
if is_doc and unstructured_version < (0, 4, 11):
raise ValueError(
f"You are on unstructured version {__unstructured_version__}. "
"Partitioning .doc files is only supported in unstructured>=0.4.11. "
"Please upgrade the unstructured package and try again."
)
if is_doc:
from unstructured.partition.doc import partition_doc
elements = partition_doc(filename=self._file_path)
else:
from unstructured.partition.docx import partition_docx
elements = partition_docx(filename=self._file_path)
from unstructured.chunking.title import chunk_by_title
chunks = chunk_by_title(elements, max_characters=2000, combine_text_under_n_chars=0)
documents = []
for chunk in chunks:
text = chunk.text.strip()
documents.append(Document(page_content=text))
return documents

View File

@@ -0,0 +1,51 @@
import base64
import logging
from bs4 import BeautifulSoup
from core.rag.extractor.extractor_base import BaseExtractor
from core.rag.models.document import Document
logger = logging.getLogger(__name__)
class UnstructuredEmailExtractor(BaseExtractor):
"""Load msg files.
Args:
file_path: Path to the file to load.
"""
def __init__(
self,
file_path: str,
api_url: str,
):
"""Initialize with file path."""
self._file_path = file_path
self._api_url = api_url
def extract(self) -> list[Document]:
from unstructured.partition.email import partition_email
elements = partition_email(filename=self._file_path, api_url=self._api_url)
# noinspection PyBroadException
try:
for element in elements:
element_text = element.text.strip()
padding_needed = 4 - len(element_text) % 4
element_text += '=' * padding_needed
element_decode = base64.b64decode(element_text)
soup = BeautifulSoup(element_decode.decode('utf-8'), 'html.parser')
element.text = soup.get_text()
except Exception:
pass
from unstructured.chunking.title import chunk_by_title
chunks = chunk_by_title(elements, max_characters=2000, combine_text_under_n_chars=0)
documents = []
for chunk in chunks:
text = chunk.text.strip()
documents.append(Document(page_content=text))
return documents

View File

@@ -0,0 +1,47 @@
import logging
from core.rag.extractor.extractor_base import BaseExtractor
from core.rag.models.document import Document
logger = logging.getLogger(__name__)
class UnstructuredMarkdownExtractor(BaseExtractor):
"""Load md files.
Args:
file_path: Path to the file to load.
remove_hyperlinks: Whether to remove hyperlinks from the text.
remove_images: Whether to remove images from the text.
encoding: File encoding to use. If `None`, the file will be loaded
with the default system encoding.
autodetect_encoding: Whether to try to autodetect the file encoding
if the specified encoding fails.
"""
def __init__(
self,
file_path: str,
api_url: str,
):
"""Initialize with file path."""
self._file_path = file_path
self._api_url = api_url
def extract(self) -> list[Document]:
from unstructured.partition.md import partition_md
elements = partition_md(filename=self._file_path, api_url=self._api_url)
from unstructured.chunking.title import chunk_by_title
chunks = chunk_by_title(elements, max_characters=2000, combine_text_under_n_chars=0)
documents = []
for chunk in chunks:
text = chunk.text.strip()
documents.append(Document(page_content=text))
return documents

View File

@@ -0,0 +1,37 @@
import logging
from core.rag.extractor.extractor_base import BaseExtractor
from core.rag.models.document import Document
logger = logging.getLogger(__name__)
class UnstructuredMsgExtractor(BaseExtractor):
"""Load msg files.
Args:
file_path: Path to the file to load.
"""
def __init__(
self,
file_path: str,
api_url: str
):
"""Initialize with file path."""
self._file_path = file_path
self._api_url = api_url
def extract(self) -> list[Document]:
from unstructured.partition.msg import partition_msg
elements = partition_msg(filename=self._file_path, api_url=self._api_url)
from unstructured.chunking.title import chunk_by_title
chunks = chunk_by_title(elements, max_characters=2000, combine_text_under_n_chars=0)
documents = []
for chunk in chunks:
text = chunk.text.strip()
documents.append(Document(page_content=text))
return documents

View File

@@ -0,0 +1,44 @@
import logging
from core.rag.extractor.extractor_base import BaseExtractor
from core.rag.models.document import Document
logger = logging.getLogger(__name__)
class UnstructuredPPTExtractor(BaseExtractor):
"""Load msg files.
Args:
file_path: Path to the file to load.
"""
def __init__(
self,
file_path: str,
api_url: str
):
"""Initialize with file path."""
self._file_path = file_path
self._api_url = api_url
def extract(self) -> list[Document]:
from unstructured.partition.ppt import partition_ppt
elements = partition_ppt(filename=self._file_path, api_url=self._api_url)
text_by_page = {}
for element in elements:
page = element.metadata.page_number
text = element.text
if page in text_by_page:
text_by_page[page] += "\n" + text
else:
text_by_page[page] = text
combined_texts = list(text_by_page.values())
documents = []
for combined_text in combined_texts:
text = combined_text.strip()
documents.append(Document(page_content=text))
return documents

View File

@@ -0,0 +1,45 @@
import logging
from core.rag.extractor.extractor_base import BaseExtractor
from core.rag.models.document import Document
logger = logging.getLogger(__name__)
class UnstructuredPPTXExtractor(BaseExtractor):
"""Load msg files.
Args:
file_path: Path to the file to load.
"""
def __init__(
self,
file_path: str,
api_url: str
):
"""Initialize with file path."""
self._file_path = file_path
self._api_url = api_url
def extract(self) -> list[Document]:
from unstructured.partition.pptx import partition_pptx
elements = partition_pptx(filename=self._file_path, api_url=self._api_url)
text_by_page = {}
for element in elements:
page = element.metadata.page_number
text = element.text
if page in text_by_page:
text_by_page[page] += "\n" + text
else:
text_by_page[page] = text
combined_texts = list(text_by_page.values())
documents = []
for combined_text in combined_texts:
text = combined_text.strip()
documents.append(Document(page_content=text))
return documents

View File

@@ -0,0 +1,37 @@
import logging
from core.rag.extractor.extractor_base import BaseExtractor
from core.rag.models.document import Document
logger = logging.getLogger(__name__)
class UnstructuredTextExtractor(BaseExtractor):
"""Load msg files.
Args:
file_path: Path to the file to load.
"""
def __init__(
self,
file_path: str,
api_url: str
):
"""Initialize with file path."""
self._file_path = file_path
self._api_url = api_url
def extract(self) -> list[Document]:
from unstructured.partition.text import partition_text
elements = partition_text(filename=self._file_path, api_url=self._api_url)
from unstructured.chunking.title import chunk_by_title
chunks = chunk_by_title(elements, max_characters=2000, combine_text_under_n_chars=0)
documents = []
for chunk in chunks:
text = chunk.text.strip()
documents.append(Document(page_content=text))
return documents

View File

@@ -0,0 +1,37 @@
import logging
from core.rag.extractor.extractor_base import BaseExtractor
from core.rag.models.document import Document
logger = logging.getLogger(__name__)
class UnstructuredXmlExtractor(BaseExtractor):
"""Load msg files.
Args:
file_path: Path to the file to load.
"""
def __init__(
self,
file_path: str,
api_url: str
):
"""Initialize with file path."""
self._file_path = file_path
self._api_url = api_url
def extract(self) -> list[Document]:
from unstructured.partition.xml import partition_xml
elements = partition_xml(filename=self._file_path, xml_keep_tags=True, api_url=self._api_url)
from unstructured.chunking.title import chunk_by_title
chunks = chunk_by_title(elements, max_characters=2000, combine_text_under_n_chars=0)
documents = []
for chunk in chunks:
text = chunk.text.strip()
documents.append(Document(page_content=text))
return documents