mirror of
http://112.124.100.131/huang.ze/ebiz-dify-ai.git
synced 2025-12-15 22:06:52 +08:00
165
api/core/rag/datasource/retrieval_service.py
Normal file
165
api/core/rag/datasource/retrieval_service.py
Normal file
@@ -0,0 +1,165 @@
|
||||
import threading
|
||||
from typing import Optional
|
||||
|
||||
from flask import Flask, current_app
|
||||
from flask_login import current_user
|
||||
|
||||
from core.rag.data_post_processor.data_post_processor import DataPostProcessor
|
||||
from core.rag.datasource.keyword.keyword_factory import Keyword
|
||||
from core.rag.datasource.vdb.vector_factory import Vector
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import Dataset
|
||||
|
||||
default_retrieval_model = {
|
||||
'search_method': 'semantic_search',
|
||||
'reranking_enable': False,
|
||||
'reranking_model': {
|
||||
'reranking_provider_name': '',
|
||||
'reranking_model_name': ''
|
||||
},
|
||||
'top_k': 2,
|
||||
'score_threshold_enabled': False
|
||||
}
|
||||
|
||||
|
||||
class RetrievalService:
|
||||
|
||||
@classmethod
|
||||
def retrieve(cls, retrival_method: str, dataset_id: str, query: str,
|
||||
top_k: int, score_threshold: Optional[float] = .0, reranking_model: Optional[dict] = None):
|
||||
all_documents = []
|
||||
threads = []
|
||||
# retrieval_model source with keyword
|
||||
if retrival_method == 'keyword_search':
|
||||
keyword_thread = threading.Thread(target=RetrievalService.keyword_search, kwargs={
|
||||
'flask_app': current_app._get_current_object(),
|
||||
'dataset_id': dataset_id,
|
||||
'query': query,
|
||||
'top_k': top_k
|
||||
})
|
||||
threads.append(keyword_thread)
|
||||
keyword_thread.start()
|
||||
# retrieval_model source with semantic
|
||||
if retrival_method == 'semantic_search' or retrival_method == 'hybrid_search':
|
||||
embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
|
||||
'flask_app': current_app._get_current_object(),
|
||||
'dataset_id': dataset_id,
|
||||
'query': query,
|
||||
'top_k': top_k,
|
||||
'score_threshold': score_threshold,
|
||||
'reranking_model': reranking_model,
|
||||
'all_documents': all_documents,
|
||||
'retrival_method': retrival_method
|
||||
})
|
||||
threads.append(embedding_thread)
|
||||
embedding_thread.start()
|
||||
|
||||
# retrieval source with full text
|
||||
if retrival_method == 'full_text_search' or retrival_method == 'hybrid_search':
|
||||
full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search, kwargs={
|
||||
'flask_app': current_app._get_current_object(),
|
||||
'dataset_id': dataset_id,
|
||||
'query': query,
|
||||
'retrival_method': retrival_method,
|
||||
'score_threshold': score_threshold,
|
||||
'top_k': top_k,
|
||||
'reranking_model': reranking_model,
|
||||
'all_documents': all_documents
|
||||
})
|
||||
threads.append(full_text_index_thread)
|
||||
full_text_index_thread.start()
|
||||
|
||||
for thread in threads:
|
||||
thread.join()
|
||||
|
||||
if retrival_method == 'hybrid_search':
|
||||
data_post_processor = DataPostProcessor(str(current_user.current_tenant_id), reranking_model, False)
|
||||
all_documents = data_post_processor.invoke(
|
||||
query=query,
|
||||
documents=all_documents,
|
||||
score_threshold=score_threshold,
|
||||
top_n=top_k
|
||||
)
|
||||
return all_documents
|
||||
|
||||
@classmethod
|
||||
def keyword_search(cls, flask_app: Flask, dataset_id: str, query: str,
|
||||
top_k: int, all_documents: list):
|
||||
with flask_app.app_context():
|
||||
dataset = db.session.query(Dataset).filter(
|
||||
Dataset.id == dataset_id
|
||||
).first()
|
||||
|
||||
keyword = Keyword(
|
||||
dataset=dataset
|
||||
)
|
||||
|
||||
documents = keyword.search(
|
||||
query,
|
||||
k=top_k
|
||||
)
|
||||
all_documents.extend(documents)
|
||||
|
||||
@classmethod
|
||||
def embedding_search(cls, flask_app: Flask, dataset_id: str, query: str,
|
||||
top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
|
||||
all_documents: list, retrival_method: str):
|
||||
with flask_app.app_context():
|
||||
dataset = db.session.query(Dataset).filter(
|
||||
Dataset.id == dataset_id
|
||||
).first()
|
||||
|
||||
vector = Vector(
|
||||
dataset=dataset
|
||||
)
|
||||
|
||||
documents = vector.search_by_vector(
|
||||
query,
|
||||
search_type='similarity_score_threshold',
|
||||
k=top_k,
|
||||
score_threshold=score_threshold,
|
||||
filter={
|
||||
'group_id': [dataset.id]
|
||||
}
|
||||
)
|
||||
|
||||
if documents:
|
||||
if reranking_model and retrival_method == 'semantic_search':
|
||||
data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
|
||||
all_documents.extend(data_post_processor.invoke(
|
||||
query=query,
|
||||
documents=documents,
|
||||
score_threshold=score_threshold,
|
||||
top_n=len(documents)
|
||||
))
|
||||
else:
|
||||
all_documents.extend(documents)
|
||||
|
||||
@classmethod
|
||||
def full_text_index_search(cls, flask_app: Flask, dataset_id: str, query: str,
|
||||
top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
|
||||
all_documents: list, retrival_method: str):
|
||||
with flask_app.app_context():
|
||||
dataset = db.session.query(Dataset).filter(
|
||||
Dataset.id == dataset_id
|
||||
).first()
|
||||
|
||||
vector_processor = Vector(
|
||||
dataset=dataset,
|
||||
)
|
||||
|
||||
documents = vector_processor.search_by_full_text(
|
||||
query,
|
||||
top_k=top_k
|
||||
)
|
||||
if documents:
|
||||
if reranking_model and retrival_method == 'full_text_search':
|
||||
data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
|
||||
all_documents.extend(data_post_processor.invoke(
|
||||
query=query,
|
||||
documents=documents,
|
||||
score_threshold=score_threshold,
|
||||
top_n=len(documents)
|
||||
))
|
||||
else:
|
||||
all_documents.extend(documents)
|
||||
Reference in New Issue
Block a user