mirror of
http://112.124.100.131/huang.ze/ebiz-dify-ai.git
synced 2025-12-09 19:06:51 +08:00
feat: Add OceanBase hybrid search features (#16652)
Co-authored-by: 李远军 <4842@9ji.com> Co-authored-by: yourchanges <yourchanges@gmail.com>
This commit is contained in:
@@ -31,6 +31,7 @@ class OceanBaseVectorConfig(BaseModel):
|
||||
user: str
|
||||
password: str
|
||||
database: str
|
||||
enable_hybrid_search: bool = False
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
@@ -57,6 +58,7 @@ class OceanBaseVector(BaseVector):
|
||||
password=self._config.password,
|
||||
db_name=self._config.database,
|
||||
)
|
||||
self._hybrid_search_enabled = self._check_hybrid_search_support() # Check if hybrid search is supported
|
||||
|
||||
def get_type(self) -> str:
|
||||
return VectorType.OCEANBASE
|
||||
@@ -98,6 +100,16 @@ class OceanBaseVector(BaseVector):
|
||||
columns=cols,
|
||||
vidxs=vidx_params,
|
||||
)
|
||||
try:
|
||||
if self._hybrid_search_enabled:
|
||||
self._client.perform_raw_text_sql(f"""ALTER TABLE {self._collection_name}
|
||||
ADD FULLTEXT INDEX fulltext_index_for_col_text (text) WITH PARSER ik""")
|
||||
except Exception as e:
|
||||
raise Exception(
|
||||
"Failed to add fulltext index to the target table, your OceanBase version must be 4.3.5.1 or above "
|
||||
+ "to support fulltext index and vector index in the same table",
|
||||
e,
|
||||
)
|
||||
vals = []
|
||||
params = self._client.perform_raw_text_sql("SHOW PARAMETERS LIKE '%ob_vector_memory_limit_percentage%'")
|
||||
for row in params:
|
||||
@@ -116,6 +128,27 @@ class OceanBaseVector(BaseVector):
|
||||
)
|
||||
redis_client.set(collection_exist_cache_key, 1, ex=3600)
|
||||
|
||||
def _check_hybrid_search_support(self) -> bool:
|
||||
"""
|
||||
Check if the current OceanBase version supports hybrid search.
|
||||
Returns True if the version is >= 4.3.5.1, otherwise False.
|
||||
"""
|
||||
if not self._config.enable_hybrid_search:
|
||||
return False
|
||||
|
||||
try:
|
||||
from packaging import version
|
||||
|
||||
# return OceanBase_CE 4.3.5.1 (r101000042025031818-bxxxx) (Built Mar 18 2025 18:13:36)
|
||||
result = self._client.perform_raw_text_sql("SELECT @@version_comment AS version")
|
||||
ob_full_version = result.fetchone()[0]
|
||||
ob_version = ob_full_version.split()[1]
|
||||
logger.debug("Current OceanBase version is %s", ob_version)
|
||||
return version.parse(ob_version).base_version >= version.parse("4.3.5.1").base_version
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to check OceanBase version: {str(e)}. Disabling hybrid search.")
|
||||
return False
|
||||
|
||||
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
|
||||
ids = self._get_uuids(documents)
|
||||
for id, doc, emb in zip(ids, documents, embeddings):
|
||||
@@ -130,7 +163,7 @@ class OceanBaseVector(BaseVector):
|
||||
)
|
||||
|
||||
def text_exists(self, id: str) -> bool:
|
||||
cur = self._client.get(table_name=self._collection_name, id=id)
|
||||
cur = self._client.get(table_name=self._collection_name, ids=id)
|
||||
return bool(cur.rowcount != 0)
|
||||
|
||||
def delete_by_ids(self, ids: list[str]) -> None:
|
||||
@@ -139,9 +172,12 @@ class OceanBaseVector(BaseVector):
|
||||
self._client.delete(table_name=self._collection_name, ids=ids)
|
||||
|
||||
def get_ids_by_metadata_field(self, key: str, value: str) -> list[str]:
|
||||
from sqlalchemy import text
|
||||
|
||||
cur = self._client.get(
|
||||
table_name=self._collection_name,
|
||||
where_clause=f"metadata->>'$.{key}' = '{value}'",
|
||||
ids=None,
|
||||
where_clause=[text(f"metadata->>'$.{key}' = '{value}'")],
|
||||
output_column_name=["id"],
|
||||
)
|
||||
return [row[0] for row in cur]
|
||||
@@ -151,36 +187,84 @@ class OceanBaseVector(BaseVector):
|
||||
self.delete_by_ids(ids)
|
||||
|
||||
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
|
||||
return []
|
||||
if not self._hybrid_search_enabled:
|
||||
return []
|
||||
|
||||
try:
|
||||
top_k = kwargs.get("top_k", 5)
|
||||
if not isinstance(top_k, int) or top_k <= 0:
|
||||
raise ValueError("top_k must be a positive integer")
|
||||
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
where_clause = ""
|
||||
if document_ids_filter:
|
||||
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
|
||||
where_clause = f" AND metadata->>'$.document_id' IN ({document_ids})"
|
||||
|
||||
full_sql = f"""SELECT metadata, text, MATCH (text) AGAINST (:query) AS score
|
||||
FROM {self._collection_name}
|
||||
WHERE MATCH (text) AGAINST (:query) > 0
|
||||
{where_clause}
|
||||
ORDER BY score DESC
|
||||
LIMIT {top_k}"""
|
||||
|
||||
with self._client.engine.connect() as conn:
|
||||
with conn.begin():
|
||||
from sqlalchemy import text
|
||||
|
||||
result = conn.execute(text(full_sql), {"query": query})
|
||||
rows = result.fetchall()
|
||||
|
||||
docs = []
|
||||
for row in rows:
|
||||
metadata_str, _text, score = row
|
||||
try:
|
||||
metadata = json.loads(metadata_str)
|
||||
except json.JSONDecodeError:
|
||||
print(f"Invalid JSON metadata: {metadata_str}")
|
||||
metadata = {}
|
||||
metadata["score"] = score
|
||||
docs.append(Document(page_content=_text, metadata=metadata))
|
||||
|
||||
return docs
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to fulltext search: {str(e)}.")
|
||||
return []
|
||||
|
||||
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
|
||||
document_ids_filter = kwargs.get("document_ids_filter")
|
||||
where_clause = None
|
||||
_where_clause = None
|
||||
if document_ids_filter:
|
||||
document_ids = ", ".join(f"'{id}'" for id in document_ids_filter)
|
||||
where_clause = f"metadata->>'$.document_id' in ({document_ids})"
|
||||
from sqlalchemy import text
|
||||
|
||||
_where_clause = [text(where_clause)]
|
||||
ef_search = kwargs.get("ef_search", self._hnsw_ef_search)
|
||||
if ef_search != self._hnsw_ef_search:
|
||||
self._client.set_ob_hnsw_ef_search(ef_search)
|
||||
self._hnsw_ef_search = ef_search
|
||||
topk = kwargs.get("top_k", 10)
|
||||
cur = self._client.ann_search(
|
||||
table_name=self._collection_name,
|
||||
vec_column_name="vector",
|
||||
vec_data=query_vector,
|
||||
topk=topk,
|
||||
distance_func=func.l2_distance,
|
||||
output_column_names=["text", "metadata"],
|
||||
with_dist=True,
|
||||
where_clause=where_clause,
|
||||
)
|
||||
try:
|
||||
cur = self._client.ann_search(
|
||||
table_name=self._collection_name,
|
||||
vec_column_name="vector",
|
||||
vec_data=query_vector,
|
||||
topk=topk,
|
||||
distance_func=func.l2_distance,
|
||||
output_column_names=["text", "metadata"],
|
||||
with_dist=True,
|
||||
where_clause=_where_clause,
|
||||
)
|
||||
except Exception as e:
|
||||
raise Exception("Failed to search by vector. ", e)
|
||||
docs = []
|
||||
for text, metadata, distance in cur:
|
||||
for _text, metadata, distance in cur:
|
||||
metadata = json.loads(metadata)
|
||||
metadata["score"] = 1 - distance / math.sqrt(2)
|
||||
docs.append(
|
||||
Document(
|
||||
page_content=text,
|
||||
page_content=_text,
|
||||
metadata=metadata,
|
||||
)
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user