feat: mypy for all type check (#10921)

This commit is contained in:
yihong
2024-12-24 18:38:51 +08:00
committed by GitHub
parent c91e8b1737
commit 56e15d09a9
584 changed files with 3975 additions and 2826 deletions

View File

@@ -2,10 +2,10 @@ import json
from typing import Any, Optional
from pydantic import BaseModel
from tcvectordb import VectorDBClient
from tcvectordb.model import document, enum
from tcvectordb.model import index as vdb_index
from tcvectordb.model.document import Filter
from tcvectordb import VectorDBClient # type: ignore
from tcvectordb.model import document, enum # type: ignore
from tcvectordb.model import index as vdb_index # type: ignore
from tcvectordb.model.document import Filter # type: ignore
from configs import dify_config
from core.rag.datasource.vdb.vector_base import BaseVector
@@ -25,8 +25,8 @@ class TencentConfig(BaseModel):
database: Optional[str]
index_type: str = "HNSW"
metric_type: str = "L2"
shard: int = (1,)
replicas: int = (2,)
shard: int = 1
replicas: int = 2
def to_tencent_params(self):
return {"url": self.url, "username": self.username, "key": self.api_key, "timeout": self.timeout}
@@ -120,15 +120,15 @@ class TencentVector(BaseVector):
metadatas = [doc.metadata for doc in documents]
total_count = len(embeddings)
docs = []
for id in range(0, total_count):
for i in range(0, total_count):
if metadatas is None:
continue
metadata = json.dumps(metadatas[id])
metadata = metadatas[i] or {}
doc = document.Document(
id=metadatas[id]["doc_id"],
vector=embeddings[id],
text=texts[id],
metadata=metadata,
id=metadata.get("doc_id"),
vector=embeddings[i],
text=texts[i],
metadata=json.dumps(metadata),
)
docs.append(doc)
self._db.collection(self._collection_name).upsert(docs, self._client_config.timeout)
@@ -159,8 +159,8 @@ class TencentVector(BaseVector):
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
return []
def _get_search_res(self, res, score_threshold):
docs = []
def _get_search_res(self, res: list | None, score_threshold: float) -> list[Document]:
docs: list[Document] = []
if res is None or len(res) == 0:
return docs
@@ -193,7 +193,7 @@ class TencentVectorFactory(AbstractVectorFactory):
return TencentVector(
collection_name=collection_name,
config=TencentConfig(
url=dify_config.TENCENT_VECTOR_DB_URL,
url=dify_config.TENCENT_VECTOR_DB_URL or "",
api_key=dify_config.TENCENT_VECTOR_DB_API_KEY,
timeout=dify_config.TENCENT_VECTOR_DB_TIMEOUT,
username=dify_config.TENCENT_VECTOR_DB_USERNAME,