mirror of
http://112.124.100.131/huang.ze/ebiz-dify-ai.git
synced 2025-12-24 18:23:07 +08:00
feat: universal chat in explore (#649)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
This commit is contained in:
@@ -1,10 +1,12 @@
|
||||
import json
|
||||
import logging
|
||||
import time
|
||||
|
||||
from typing import Any, Dict, List, Union, Optional
|
||||
|
||||
from langchain.agents import openai_functions_agent, openai_functions_multi_agent
|
||||
from langchain.callbacks.base import BaseCallbackHandler
|
||||
from langchain.schema import AgentAction, AgentFinish, LLMResult
|
||||
from langchain.schema import AgentAction, AgentFinish, LLMResult, ChatGeneration
|
||||
|
||||
from core.callback_handler.entity.agent_loop import AgentLoop
|
||||
from core.conversation_message_task import ConversationMessageTask
|
||||
@@ -20,6 +22,7 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
|
||||
self.conversation_message_task = conversation_message_task
|
||||
self._agent_loops = []
|
||||
self._current_loop = None
|
||||
self._message_agent_thought = None
|
||||
self.current_chain = None
|
||||
|
||||
@property
|
||||
@@ -29,6 +32,7 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
|
||||
def clear_agent_loops(self) -> None:
|
||||
self._agent_loops = []
|
||||
self._current_loop = None
|
||||
self._message_agent_thought = None
|
||||
|
||||
@property
|
||||
def always_verbose(self) -> bool:
|
||||
@@ -61,9 +65,21 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
|
||||
# kwargs={}
|
||||
if self._current_loop and self._current_loop.status == 'llm_started':
|
||||
self._current_loop.status = 'llm_end'
|
||||
self._current_loop.prompt_tokens = response.llm_output['token_usage']['prompt_tokens']
|
||||
self._current_loop.completion = response.generations[0][0].text
|
||||
self._current_loop.completion_tokens = response.llm_output['token_usage']['completion_tokens']
|
||||
if response.llm_output:
|
||||
self._current_loop.prompt_tokens = response.llm_output['token_usage']['prompt_tokens']
|
||||
completion_generation = response.generations[0][0]
|
||||
if isinstance(completion_generation, ChatGeneration):
|
||||
completion_message = completion_generation.message
|
||||
if 'function_call' in completion_message.additional_kwargs:
|
||||
self._current_loop.completion \
|
||||
= json.dumps({'function_call': completion_message.additional_kwargs['function_call']})
|
||||
else:
|
||||
self._current_loop.completion = response.generations[0][0].text
|
||||
else:
|
||||
self._current_loop.completion = completion_generation.text
|
||||
|
||||
if response.llm_output:
|
||||
self._current_loop.completion_tokens = response.llm_output['token_usage']['completion_tokens']
|
||||
|
||||
def on_llm_error(
|
||||
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
|
||||
@@ -71,6 +87,7 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
|
||||
logging.error(error)
|
||||
self._agent_loops = []
|
||||
self._current_loop = None
|
||||
self._message_agent_thought = None
|
||||
|
||||
def on_tool_start(
|
||||
self,
|
||||
@@ -89,15 +106,29 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
|
||||
) -> Any:
|
||||
"""Run on agent action."""
|
||||
tool = action.tool
|
||||
tool_input = action.tool_input
|
||||
action_name_position = action.log.index("\nAction:") + 1 if action.log else -1
|
||||
thought = action.log[:action_name_position].strip() if action.log else ''
|
||||
tool_input = json.dumps({"query": action.tool_input}
|
||||
if isinstance(action.tool_input, str) else action.tool_input)
|
||||
completion = None
|
||||
if isinstance(action, openai_functions_agent.base._FunctionsAgentAction) \
|
||||
or isinstance(action, openai_functions_multi_agent.base._FunctionsAgentAction):
|
||||
thought = action.log.strip()
|
||||
completion = json.dumps({'function_call': action.message_log[0].additional_kwargs['function_call']})
|
||||
else:
|
||||
action_name_position = action.log.index("Action:") if action.log else -1
|
||||
thought = action.log[:action_name_position].strip() if action.log else ''
|
||||
|
||||
if self._current_loop and self._current_loop.status == 'llm_end':
|
||||
self._current_loop.status = 'agent_action'
|
||||
self._current_loop.thought = thought
|
||||
self._current_loop.tool_name = tool
|
||||
self._current_loop.tool_input = tool_input
|
||||
if completion is not None:
|
||||
self._current_loop.completion = completion
|
||||
|
||||
self._message_agent_thought = self.conversation_message_task.on_agent_start(
|
||||
self.current_chain,
|
||||
self._current_loop
|
||||
)
|
||||
|
||||
def on_tool_end(
|
||||
self,
|
||||
@@ -120,10 +151,13 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
|
||||
self._current_loop.completed_at = time.perf_counter()
|
||||
self._current_loop.latency = self._current_loop.completed_at - self._current_loop.started_at
|
||||
|
||||
self.conversation_message_task.on_agent_end(self.current_chain, self.model_name, self._current_loop)
|
||||
self.conversation_message_task.on_agent_end(
|
||||
self._message_agent_thought, self.model_name, self._current_loop
|
||||
)
|
||||
|
||||
self._agent_loops.append(self._current_loop)
|
||||
self._current_loop = None
|
||||
self._message_agent_thought = None
|
||||
|
||||
def on_tool_error(
|
||||
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
|
||||
@@ -132,6 +166,7 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
|
||||
logging.error(error)
|
||||
self._agent_loops = []
|
||||
self._current_loop = None
|
||||
self._message_agent_thought = None
|
||||
|
||||
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> Any:
|
||||
"""Run on agent end."""
|
||||
@@ -141,10 +176,18 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
|
||||
self._current_loop.completed = True
|
||||
self._current_loop.completed_at = time.perf_counter()
|
||||
self._current_loop.latency = self._current_loop.completed_at - self._current_loop.started_at
|
||||
self._current_loop.thought = '[DONE]'
|
||||
self._message_agent_thought = self.conversation_message_task.on_agent_start(
|
||||
self.current_chain,
|
||||
self._current_loop
|
||||
)
|
||||
|
||||
self.conversation_message_task.on_agent_end(self.current_chain, self.model_name, self._current_loop)
|
||||
self.conversation_message_task.on_agent_end(
|
||||
self._message_agent_thought, self.model_name, self._current_loop
|
||||
)
|
||||
|
||||
self._agent_loops.append(self._current_loop)
|
||||
self._current_loop = None
|
||||
self._message_agent_thought = None
|
||||
elif not self._current_loop and self._agent_loops:
|
||||
self._agent_loops[-1].status = 'agent_finish'
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import json
|
||||
import logging
|
||||
|
||||
from typing import Any, Dict, List, Union, Optional
|
||||
@@ -43,9 +44,11 @@ class DatasetToolCallbackHandler(BaseCallbackHandler):
|
||||
input_str: str,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
tool_name = serialized.get('name')
|
||||
dataset_id = tool_name[len("dataset-"):]
|
||||
self.conversation_message_task.on_dataset_query_end(DatasetQueryObj(dataset_id=dataset_id, query=input_str))
|
||||
# tool_name = serialized.get('name')
|
||||
input_dict = json.loads(input_str.replace("'", "\""))
|
||||
dataset_id = input_dict.get('dataset_id')
|
||||
query = input_dict.get('query')
|
||||
self.conversation_message_task.on_dataset_query_end(DatasetQueryObj(dataset_id=dataset_id, query=query))
|
||||
|
||||
def on_tool_end(
|
||||
self,
|
||||
|
||||
@@ -10,9 +10,9 @@ class AgentLoop(BaseModel):
|
||||
tool_output: str = None
|
||||
|
||||
prompt: str = None
|
||||
prompt_tokens: int = None
|
||||
prompt_tokens: int = 0
|
||||
completion: str = None
|
||||
completion_tokens: int = None
|
||||
completion_tokens: int = 0
|
||||
|
||||
latency: float = None
|
||||
|
||||
|
||||
@@ -1,20 +1,18 @@
|
||||
import logging
|
||||
import time
|
||||
from typing import Any, Dict, List, Union, Optional
|
||||
from typing import Any, Dict, List, Union
|
||||
|
||||
from langchain.callbacks.base import BaseCallbackHandler
|
||||
from langchain.schema import AgentAction, AgentFinish, LLMResult, HumanMessage, AIMessage, SystemMessage, BaseMessage
|
||||
from langchain.schema import LLMResult, BaseMessage, BaseLanguageModel
|
||||
|
||||
from core.callback_handler.entity.llm_message import LLMMessage
|
||||
from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException
|
||||
from core.llm.streamable_chat_open_ai import StreamableChatOpenAI
|
||||
from core.llm.streamable_open_ai import StreamableOpenAI
|
||||
|
||||
|
||||
class LLMCallbackHandler(BaseCallbackHandler):
|
||||
raise_error: bool = True
|
||||
|
||||
def __init__(self, llm: Union[StreamableOpenAI, StreamableChatOpenAI],
|
||||
def __init__(self, llm: BaseLanguageModel,
|
||||
conversation_message_task: ConversationMessageTask):
|
||||
self.llm = llm
|
||||
self.llm_message = LLMMessage()
|
||||
|
||||
@@ -20,15 +20,13 @@ class MainChainGatherCallbackHandler(BaseCallbackHandler):
|
||||
self._current_chain_result = None
|
||||
self._current_chain_message = None
|
||||
self.conversation_message_task = conversation_message_task
|
||||
self.agent_loop_gather_callback_handler = AgentLoopGatherCallbackHandler(
|
||||
llm_constant.agent_model_name,
|
||||
conversation_message_task
|
||||
)
|
||||
self.agent_callback = None
|
||||
|
||||
def clear_chain_results(self) -> None:
|
||||
self._current_chain_result = None
|
||||
self._current_chain_message = None
|
||||
self.agent_loop_gather_callback_handler.current_chain = None
|
||||
if self.agent_callback:
|
||||
self.agent_callback.current_chain = None
|
||||
|
||||
@property
|
||||
def always_verbose(self) -> bool:
|
||||
@@ -58,7 +56,8 @@ class MainChainGatherCallbackHandler(BaseCallbackHandler):
|
||||
started_at=time.perf_counter()
|
||||
)
|
||||
self._current_chain_message = self.conversation_message_task.init_chain(self._current_chain_result)
|
||||
self.agent_loop_gather_callback_handler.current_chain = self._current_chain_message
|
||||
if self.agent_callback:
|
||||
self.agent_callback.current_chain = self._current_chain_message
|
||||
|
||||
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
|
||||
"""Print out that we finished a chain."""
|
||||
|
||||
Reference in New Issue
Block a user