mirror of
http://112.124.100.131/huang.ze/ebiz-dify-ai.git
synced 2025-12-11 03:46:52 +08:00
Feat/add retriever rerank (#1560)
Co-authored-by: jyong <jyong@dify.ai>
This commit is contained in:
88
api/services/retrieval_service.py
Normal file
88
api/services/retrieval_service.py
Normal file
@@ -0,0 +1,88 @@
|
||||
|
||||
from typing import Optional
|
||||
from flask import current_app, Flask
|
||||
from langchain.embeddings.base import Embeddings
|
||||
from core.index.vector_index.vector_index import VectorIndex
|
||||
from core.model_providers.model_factory import ModelFactory
|
||||
from models.dataset import Dataset
|
||||
|
||||
default_retrieval_model = {
|
||||
'search_method': 'semantic_search',
|
||||
'reranking_enable': False,
|
||||
'reranking_model': {
|
||||
'reranking_provider_name': '',
|
||||
'reranking_model_name': ''
|
||||
},
|
||||
'top_k': 2,
|
||||
'score_threshold_enable': False
|
||||
}
|
||||
|
||||
|
||||
class RetrievalService:
|
||||
|
||||
@classmethod
|
||||
def embedding_search(cls, flask_app: Flask, dataset: Dataset, query: str,
|
||||
top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
|
||||
all_documents: list, search_method: str, embeddings: Embeddings):
|
||||
with flask_app.app_context():
|
||||
|
||||
vector_index = VectorIndex(
|
||||
dataset=dataset,
|
||||
config=current_app.config,
|
||||
embeddings=embeddings
|
||||
)
|
||||
|
||||
documents = vector_index.search(
|
||||
query,
|
||||
search_type='similarity_score_threshold',
|
||||
search_kwargs={
|
||||
'k': top_k,
|
||||
'score_threshold': score_threshold,
|
||||
'filter': {
|
||||
'group_id': [dataset.id]
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
if documents:
|
||||
if reranking_model and search_method == 'semantic_search':
|
||||
rerank = ModelFactory.get_reranking_model(
|
||||
tenant_id=dataset.tenant_id,
|
||||
model_provider_name=reranking_model['reranking_provider_name'],
|
||||
model_name=reranking_model['reranking_model_name']
|
||||
)
|
||||
all_documents.extend(rerank.rerank(query, documents, score_threshold, len(documents)))
|
||||
else:
|
||||
all_documents.extend(documents)
|
||||
|
||||
@classmethod
|
||||
def full_text_index_search(cls, flask_app: Flask, dataset: Dataset, query: str,
|
||||
top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
|
||||
all_documents: list, search_method: str, embeddings: Embeddings):
|
||||
with flask_app.app_context():
|
||||
|
||||
vector_index = VectorIndex(
|
||||
dataset=dataset,
|
||||
config=current_app.config,
|
||||
embeddings=embeddings
|
||||
)
|
||||
|
||||
documents = vector_index.search_by_full_text_index(
|
||||
query,
|
||||
search_type='similarity_score_threshold',
|
||||
top_k=top_k
|
||||
)
|
||||
if documents:
|
||||
if reranking_model and search_method == 'full_text_search':
|
||||
rerank = ModelFactory.get_reranking_model(
|
||||
tenant_id=dataset.tenant_id,
|
||||
model_provider_name=reranking_model['reranking_provider_name'],
|
||||
model_name=reranking_model['reranking_model_name']
|
||||
)
|
||||
all_documents.extend(rerank.rerank(query, documents, score_threshold, len(documents)))
|
||||
else:
|
||||
all_documents.extend(documents)
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user