FEAT: support Tencent vectordb to full text search (#16865)

Co-authored-by: wlleiiwang <wlleiiwang@tencent.com>
This commit is contained in:
wlleiiwang
2025-04-07 09:50:03 +08:00
committed by GitHub
parent c05e03fc09
commit 42a42a7962
8 changed files with 144 additions and 33 deletions

View File

@@ -1,12 +1,14 @@
import json
import logging
import math
from typing import Any, Optional
from pydantic import BaseModel
from tcvdb_text.encoder import BM25Encoder # type: ignore
from tcvectordb import RPCVectorDBClient, VectorDBException # type: ignore
from tcvectordb.model import document, enum # type: ignore
from tcvectordb.model import index as vdb_index # type: ignore
from tcvectordb.model.document import Filter # type: ignore
from tcvectordb.model.document import AnnSearch, Filter, KeywordSearch, WeightedRerank # type: ignore
from configs import dify_config
from core.rag.datasource.vdb.vector_base import BaseVector
@@ -17,6 +19,8 @@ from core.rag.models.document import Document
from extensions.ext_redis import redis_client
from models.dataset import Dataset
logger = logging.getLogger(__name__)
class TencentConfig(BaseModel):
url: str
@@ -25,10 +29,11 @@ class TencentConfig(BaseModel):
username: Optional[str]
database: Optional[str]
index_type: str = "HNSW"
metric_type: str = "L2"
metric_type: str = "IP"
shard: int = 1
replicas: int = 2
max_upsert_batch_size: int = 128
enable_hybrid_search: bool = False # Flag to enable hybrid search
def to_tencent_params(self):
return {"url": self.url, "username": self.username, "key": self.api_key, "timeout": self.timeout}
@@ -44,6 +49,29 @@ class TencentVector(BaseVector):
super().__init__(collection_name)
self._client_config = config
self._client = RPCVectorDBClient(**self._client_config.to_tencent_params())
self._enable_hybrid_search = False
self._dimension = 1024
self._load_collection()
self._bm25 = BM25Encoder.default("zh")
def _load_collection(self):
"""
Check if the collection supports hybrid search.
"""
if self._client_config.enable_hybrid_search:
self._enable_hybrid_search = True
if self._has_collection():
coll = self._client.describe_collection(
database_name=self._client_config.database, collection_name=self.collection_name
)
has_hybrid_search = False
for idx in coll.indexes:
if idx.name == "sparse_vector":
has_hybrid_search = True
elif idx.name == "vector":
self._dimension = idx.dimension
if not has_hybrid_search:
self._enable_hybrid_search = False
def _init_database(self):
return self._client.create_database_if_not_exists(database_name=self._client_config.database)
@@ -62,6 +90,7 @@ class TencentVector(BaseVector):
)
def _create_collection(self, dimension: int) -> None:
self._dimension = dimension
lock_name = "vector_indexing_lock_{}".format(self._collection_name)
with redis_client.lock(lock_name, timeout=20):
collection_exist_cache_key = "vector_indexing_{}".format(self._collection_name)
@@ -84,18 +113,25 @@ class TencentVector(BaseVector):
if metric_type is None:
raise ValueError("unsupported metric_type")
params = vdb_index.HNSWParams(m=16, efconstruction=200)
index = vdb_index.Index(
vdb_index.FilterIndex(self.field_id, enum.FieldType.String, enum.IndexType.PRIMARY_KEY),
vdb_index.VectorIndex(
self.field_vector,
dimension,
index_type,
metric_type,
params,
),
vdb_index.FilterIndex(self.field_text, enum.FieldType.String, enum.IndexType.FILTER),
vdb_index.FilterIndex(self.field_metadata, enum.FieldType.Json, enum.IndexType.FILTER),
index_id = vdb_index.FilterIndex(self.field_id, enum.FieldType.String, enum.IndexType.PRIMARY_KEY)
index_vector = vdb_index.VectorIndex(
self.field_vector,
dimension,
index_type,
metric_type,
params,
)
index_text = vdb_index.FilterIndex(self.field_text, enum.FieldType.String, enum.IndexType.FILTER)
index_metadate = vdb_index.FilterIndex(self.field_metadata, enum.FieldType.Json, enum.IndexType.FILTER)
index_sparse_vector = vdb_index.SparseIndex(
name="sparse_vector",
field_type=enum.FieldType.SparseVector,
index_type=enum.IndexType.SPARSE_INVERTED,
metric_type=enum.MetricType.IP,
)
indexes = [index_id, index_vector, index_text, index_metadate]
if self._enable_hybrid_search:
indexes.append(index_sparse_vector)
try:
self._client.create_collection(
database_name=self._client_config.database,
@@ -103,31 +139,25 @@ class TencentVector(BaseVector):
shard=self._client_config.shard,
replicas=self._client_config.replicas,
description="Collection for Dify",
index=index,
indexes=indexes,
)
except VectorDBException as e:
if "fieldType:json" not in e.message:
raise e
# vdb version not support json, use string
index = vdb_index.Index(
vdb_index.FilterIndex(self.field_id, enum.FieldType.String, enum.IndexType.PRIMARY_KEY),
vdb_index.VectorIndex(
self.field_vector,
dimension,
index_type,
metric_type,
params,
),
vdb_index.FilterIndex(self.field_text, enum.FieldType.String, enum.IndexType.FILTER),
vdb_index.FilterIndex(self.field_metadata, enum.FieldType.String, enum.IndexType.FILTER),
index_metadate = vdb_index.FilterIndex(
self.field_metadata, enum.FieldType.String, enum.IndexType.FILTER
)
indexes = [index_id, index_vector, index_text, index_metadate]
if self._enable_hybrid_search:
indexes.append(index_sparse_vector)
self._client.create_collection(
database_name=self._client_config.database,
collection_name=self._collection_name,
shard=self._client_config.shard,
replicas=self._client_config.replicas,
description="Collection for Dify",
index=index,
indexes=indexes,
)
redis_client.set(collection_exist_cache_key, 1, ex=3600)
@@ -155,6 +185,8 @@ class TencentVector(BaseVector):
text=texts[i],
metadata=metadata,
)
if self._enable_hybrid_search:
doc.__dict__["sparse_vector"] = self._bm25.encode_texts(texts[i])
docs.append(doc)
self._client.upsert(
database_name=self._client_config.database,
@@ -204,7 +236,32 @@ class TencentVector(BaseVector):
return self._get_search_res(res, score_threshold)
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
return []
if not self._enable_hybrid_search:
return []
res = self._client.hybrid_search(
database_name=self._client_config.database,
collection_name=self.collection_name,
ann=[
AnnSearch(
field_name="vector",
data=[0.0] * self._dimension,
)
],
match=[
KeywordSearch(
field_name="sparse_vector",
data=self._bm25.encode_queries(query),
),
],
rerank=WeightedRerank(
field_list=["vector", "sparse_vector"],
weight=[0, 1],
),
retrieve_vector=False,
limit=kwargs.get("top_k", 4),
)
score_threshold = float(kwargs.get("score_threshold") or 0.0)
return self._get_search_res(res, score_threshold)
def _get_search_res(self, res: list | None, score_threshold: float) -> list[Document]:
docs: list[Document] = []
@@ -213,7 +270,7 @@ class TencentVector(BaseVector):
for result in res[0]:
meta = result.get(self.field_metadata)
score = 1 - result.get("score", 0.0)
score = result.get("score", 0.0)
if score > score_threshold:
meta["score"] = score
doc = Document(page_content=result.get(self.field_text), metadata=meta)
@@ -245,5 +302,6 @@ class TencentVectorFactory(AbstractVectorFactory):
database=dify_config.TENCENT_VECTOR_DB_DATABASE,
shard=dify_config.TENCENT_VECTOR_DB_SHARD,
replicas=dify_config.TENCENT_VECTOR_DB_REPLICAS,
enable_hybrid_search=dify_config.TENCENT_VECTOR_DB_ENABLE_HYBRID_SEARCH or False,
),
)