mirror of
http://112.124.100.131/huang.ze/ebiz-dify-ai.git
synced 2025-12-10 03:16:51 +08:00
feat:support baidu vector db (#9185)
This commit is contained in:
0
api/core/rag/datasource/vdb/baidu/__init__.py
Normal file
0
api/core/rag/datasource/vdb/baidu/__init__.py
Normal file
272
api/core/rag/datasource/vdb/baidu/baidu_vector.py
Normal file
272
api/core/rag/datasource/vdb/baidu/baidu_vector.py
Normal file
@@ -0,0 +1,272 @@
|
||||
import json
|
||||
import time
|
||||
import uuid
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, model_validator
|
||||
from pymochow import MochowClient
|
||||
from pymochow.auth.bce_credentials import BceCredentials
|
||||
from pymochow.configuration import Configuration
|
||||
from pymochow.model.enum import FieldType, IndexState, IndexType, MetricType, TableState
|
||||
from pymochow.model.schema import Field, HNSWParams, Schema, VectorIndex
|
||||
from pymochow.model.table import AnnSearch, HNSWSearchParams, Partition, Row
|
||||
|
||||
from configs import dify_config
|
||||
from core.rag.datasource.entity.embedding import Embeddings
|
||||
from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset
|
||||
|
||||
|
||||
class BaiduConfig(BaseModel):
|
||||
endpoint: str
|
||||
connection_timeout_in_mills: int = 30 * 1000
|
||||
account: str
|
||||
api_key: str
|
||||
database: str
|
||||
index_type: str = "HNSW"
|
||||
metric_type: str = "L2"
|
||||
shard: int = 1
|
||||
replicas: int = 3
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def validate_config(cls, values: dict) -> dict:
|
||||
if not values["endpoint"]:
|
||||
raise ValueError("config BAIDU_VECTOR_DB_ENDPOINT is required")
|
||||
if not values["account"]:
|
||||
raise ValueError("config BAIDU_VECTOR_DB_ACCOUNT is required")
|
||||
if not values["api_key"]:
|
||||
raise ValueError("config BAIDU_VECTOR_DB_API_KEY is required")
|
||||
if not values["database"]:
|
||||
raise ValueError("config BAIDU_VECTOR_DB_DATABASE is required")
|
||||
return values
|
||||
|
||||
|
||||
class BaiduVector(BaseVector):
|
||||
field_id: str = "id"
|
||||
field_vector: str = "vector"
|
||||
field_text: str = "text"
|
||||
field_metadata: str = "metadata"
|
||||
field_app_id: str = "app_id"
|
||||
field_annotation_id: str = "annotation_id"
|
||||
index_vector: str = "vector_idx"
|
||||
|
||||
def __init__(self, collection_name: str, config: BaiduConfig):
|
||||
super().__init__(collection_name)
|
||||
self._client_config = config
|
||||
self._client = self._init_client(config)
|
||||
self._db = self._init_database()
|
||||
|
||||
def get_type(self) -> str:
|
||||
return VectorType.BAIDU
|
||||
|
||||
def to_index_struct(self) -> dict:
|
||||
return {"type": self.get_type(), "vector_store": {"class_prefix": self._collection_name}}
|
||||
|
||||
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
|
||||
self._create_table(len(embeddings[0]))
|
||||
self.add_texts(texts, embeddings)
|
||||
|
||||
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
|
||||
texts = [doc.page_content for doc in documents]
|
||||
metadatas = [doc.metadata for doc in documents]
|
||||
total_count = len(documents)
|
||||
batch_size = 1000
|
||||
|
||||
# upsert texts and embeddings batch by batch
|
||||
table = self._db.table(self._collection_name)
|
||||
for start in range(0, total_count, batch_size):
|
||||
end = min(start + batch_size, total_count)
|
||||
rows = []
|
||||
for i in range(start, end, 1):
|
||||
row = Row(
|
||||
id=metadatas[i].get("doc_id", str(uuid.uuid4())),
|
||||
vector=embeddings[i],
|
||||
text=texts[i],
|
||||
metadata=json.dumps(metadatas[i]),
|
||||
app_id=metadatas[i].get("app_id", ""),
|
||||
annotation_id=metadatas[i].get("annotation_id", ""),
|
||||
)
|
||||
rows.append(row)
|
||||
table.upsert(rows=rows)
|
||||
|
||||
# rebuild vector index after upsert finished
|
||||
table.rebuild_index(self.index_vector)
|
||||
while True:
|
||||
time.sleep(1)
|
||||
index = table.describe_index(self.index_vector)
|
||||
if index.state == IndexState.NORMAL:
|
||||
break
|
||||
|
||||
def text_exists(self, id: str) -> bool:
|
||||
res = self._db.table(self._collection_name).query(primary_key={self.field_id: id})
|
||||
if res and res.code == 0:
|
||||
return True
|
||||
return False
|
||||
|
||||
def delete_by_ids(self, ids: list[str]) -> None:
|
||||
quoted_ids = [f"'{id}'" for id in ids]
|
||||
self._db.table(self._collection_name).delete(filter=f"id IN({', '.join(quoted_ids)})")
|
||||
|
||||
def delete_by_metadata_field(self, key: str, value: str) -> None:
|
||||
self._db.table(self._collection_name).delete(filter=f"{key} = '{value}'")
|
||||
|
||||
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
|
||||
anns = AnnSearch(
|
||||
vector_field=self.field_vector,
|
||||
vector_floats=query_vector,
|
||||
params=HNSWSearchParams(ef=kwargs.get("ef", 10), limit=kwargs.get("top_k", 4)),
|
||||
)
|
||||
res = self._db.table(self._collection_name).search(
|
||||
anns=anns,
|
||||
projections=[self.field_id, self.field_text, self.field_metadata],
|
||||
retrieve_vector=True,
|
||||
)
|
||||
score_threshold = float(kwargs.get("score_threshold") or 0.0)
|
||||
return self._get_search_res(res, score_threshold)
|
||||
|
||||
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
|
||||
# baidu vector database doesn't support bm25 search on current version
|
||||
return []
|
||||
|
||||
def _get_search_res(self, res, score_threshold):
|
||||
docs = []
|
||||
for row in res.rows:
|
||||
row_data = row.get("row", {})
|
||||
meta = row_data.get(self.field_metadata)
|
||||
if meta is not None:
|
||||
meta = json.loads(meta)
|
||||
score = row.get("score", 0.0)
|
||||
if score > score_threshold:
|
||||
meta["score"] = score
|
||||
doc = Document(page_content=row_data.get(self.field_text), metadata=meta)
|
||||
docs.append(doc)
|
||||
|
||||
return docs
|
||||
|
||||
def delete(self) -> None:
|
||||
self._db.drop_table(table_name=self._collection_name)
|
||||
|
||||
def _init_client(self, config) -> MochowClient:
|
||||
config = Configuration(credentials=BceCredentials(config.account, config.api_key), endpoint=config.endpoint)
|
||||
client = MochowClient(config)
|
||||
return client
|
||||
|
||||
def _init_database(self):
|
||||
exists = False
|
||||
for db in self._client.list_databases():
|
||||
if db.database_name == self._client_config.database:
|
||||
exists = True
|
||||
break
|
||||
# Create database if not existed
|
||||
if exists:
|
||||
return self._client.database(self._client_config.database)
|
||||
else:
|
||||
return self._client.create_database(database_name=self._client_config.database)
|
||||
|
||||
def _table_existed(self) -> bool:
|
||||
tables = self._db.list_table()
|
||||
return any(table.table_name == self._collection_name for table in tables)
|
||||
|
||||
def _create_table(self, dimension: int) -> None:
|
||||
# Try to grab distributed lock and create table
|
||||
lock_name = "vector_indexing_lock_{}".format(self._collection_name)
|
||||
with redis_client.lock(lock_name, timeout=20):
|
||||
table_exist_cache_key = "vector_indexing_{}".format(self._collection_name)
|
||||
if redis_client.get(table_exist_cache_key):
|
||||
return
|
||||
|
||||
if self._table_existed():
|
||||
return
|
||||
|
||||
self.delete()
|
||||
|
||||
# check IndexType and MetricType
|
||||
index_type = None
|
||||
for k, v in IndexType.__members__.items():
|
||||
if k == self._client_config.index_type:
|
||||
index_type = v
|
||||
if index_type is None:
|
||||
raise ValueError("unsupported index_type")
|
||||
metric_type = None
|
||||
for k, v in MetricType.__members__.items():
|
||||
if k == self._client_config.metric_type:
|
||||
metric_type = v
|
||||
if metric_type is None:
|
||||
raise ValueError("unsupported metric_type")
|
||||
|
||||
# Construct field schema
|
||||
fields = []
|
||||
fields.append(
|
||||
Field(
|
||||
self.field_id,
|
||||
FieldType.STRING,
|
||||
primary_key=True,
|
||||
partition_key=True,
|
||||
auto_increment=False,
|
||||
not_null=True,
|
||||
)
|
||||
)
|
||||
fields.append(Field(self.field_metadata, FieldType.STRING, not_null=True))
|
||||
fields.append(Field(self.field_app_id, FieldType.STRING))
|
||||
fields.append(Field(self.field_annotation_id, FieldType.STRING))
|
||||
fields.append(Field(self.field_text, FieldType.TEXT, not_null=True))
|
||||
fields.append(Field(self.field_vector, FieldType.FLOAT_VECTOR, not_null=True, dimension=dimension))
|
||||
|
||||
# Construct vector index params
|
||||
indexes = []
|
||||
indexes.append(
|
||||
VectorIndex(
|
||||
index_name="vector_idx",
|
||||
index_type=index_type,
|
||||
field="vector",
|
||||
metric_type=metric_type,
|
||||
params=HNSWParams(m=16, efconstruction=200),
|
||||
)
|
||||
)
|
||||
|
||||
# Create table
|
||||
self._db.create_table(
|
||||
table_name=self._collection_name,
|
||||
replication=self._client_config.replicas,
|
||||
partition=Partition(partition_num=self._client_config.shard),
|
||||
schema=Schema(fields=fields, indexes=indexes),
|
||||
description="Table for Dify",
|
||||
)
|
||||
|
||||
redis_client.set(table_exist_cache_key, 1, ex=3600)
|
||||
|
||||
# Wait for table created
|
||||
while True:
|
||||
time.sleep(1)
|
||||
table = self._db.describe_table(self._collection_name)
|
||||
if table.state == TableState.NORMAL:
|
||||
break
|
||||
|
||||
|
||||
class BaiduVectorFactory(AbstractVectorFactory):
|
||||
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> BaiduVector:
|
||||
if dataset.index_struct_dict:
|
||||
class_prefix: str = dataset.index_struct_dict["vector_store"]["class_prefix"]
|
||||
collection_name = class_prefix.lower()
|
||||
else:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id).lower()
|
||||
dataset.index_struct = json.dumps(self.gen_index_struct_dict(VectorType.BAIDU, collection_name))
|
||||
|
||||
return BaiduVector(
|
||||
collection_name=collection_name,
|
||||
config=BaiduConfig(
|
||||
endpoint=dify_config.BAIDU_VECTOR_DB_ENDPOINT,
|
||||
connection_timeout_in_mills=dify_config.BAIDU_VECTOR_DB_CONNECTION_TIMEOUT_MS,
|
||||
account=dify_config.BAIDU_VECTOR_DB_ACCOUNT,
|
||||
api_key=dify_config.BAIDU_VECTOR_DB_API_KEY,
|
||||
database=dify_config.BAIDU_VECTOR_DB_DATABASE,
|
||||
shard=dify_config.BAIDU_VECTOR_DB_SHARD,
|
||||
replicas=dify_config.BAIDU_VECTOR_DB_REPLICAS,
|
||||
),
|
||||
)
|
||||
@@ -103,6 +103,10 @@ class Vector:
|
||||
from core.rag.datasource.vdb.analyticdb.analyticdb_vector import AnalyticdbVectorFactory
|
||||
|
||||
return AnalyticdbVectorFactory
|
||||
case VectorType.BAIDU:
|
||||
from core.rag.datasource.vdb.baidu.baidu_vector import BaiduVectorFactory
|
||||
|
||||
return BaiduVectorFactory
|
||||
case _:
|
||||
raise ValueError(f"Vector store {vector_type} is not supported.")
|
||||
|
||||
|
||||
@@ -16,3 +16,4 @@ class VectorType(str, Enum):
|
||||
TENCENT = "tencent"
|
||||
ORACLE = "oracle"
|
||||
ELASTICSEARCH = "elasticsearch"
|
||||
BAIDU = "baidu"
|
||||
|
||||
Reference in New Issue
Block a user