chore(api/core): apply ruff reformatting (#7624)

This commit is contained in:
Bowen Liang
2024-09-10 17:00:20 +08:00
committed by GitHub
parent 178730266d
commit 2cf1187b32
724 changed files with 21180 additions and 21123 deletions

View File

@@ -12,8 +12,8 @@ from core.tools.errors import ToolInvokeError, ToolParameterValidationError, Too
from core.tools.tool.tool import Tool
API_TOOL_DEFAULT_TIMEOUT = (
int(getenv('API_TOOL_DEFAULT_CONNECT_TIMEOUT', '10')),
int(getenv('API_TOOL_DEFAULT_READ_TIMEOUT', '60'))
int(getenv("API_TOOL_DEFAULT_CONNECT_TIMEOUT", "10")),
int(getenv("API_TOOL_DEFAULT_READ_TIMEOUT", "60")),
)
@@ -24,31 +24,32 @@ class ApiTool(Tool):
Api tool
"""
def fork_tool_runtime(self, runtime: dict[str, Any]) -> 'Tool':
def fork_tool_runtime(self, runtime: dict[str, Any]) -> "Tool":
"""
fork a new tool with meta data
fork a new tool with meta data
:param meta: the meta data of a tool call processing, tenant_id is required
:return: the new tool
:param meta: the meta data of a tool call processing, tenant_id is required
:return: the new tool
"""
return self.__class__(
identity=self.identity.model_copy() if self.identity else None,
parameters=self.parameters.copy() if self.parameters else None,
description=self.description.model_copy() if self.description else None,
api_bundle=self.api_bundle.model_copy() if self.api_bundle else None,
runtime=Tool.Runtime(**runtime)
runtime=Tool.Runtime(**runtime),
)
def validate_credentials(self, credentials: dict[str, Any], parameters: dict[str, Any],
format_only: bool = False) -> str:
def validate_credentials(
self, credentials: dict[str, Any], parameters: dict[str, Any], format_only: bool = False
) -> str:
"""
validate the credentials for Api tool
validate the credentials for Api tool
"""
# assemble validate request and request parameters
# assemble validate request and request parameters
headers = self.assembling_request(parameters)
if format_only:
return ''
return ""
response = self.do_http_request(self.api_bundle.server_url, self.api_bundle.method, headers, parameters)
# validate response
@@ -61,30 +62,30 @@ class ApiTool(Tool):
headers = {}
credentials = self.runtime.credentials or {}
if 'auth_type' not in credentials:
raise ToolProviderCredentialValidationError('Missing auth_type')
if "auth_type" not in credentials:
raise ToolProviderCredentialValidationError("Missing auth_type")
if credentials['auth_type'] == 'api_key':
api_key_header = 'api_key'
if credentials["auth_type"] == "api_key":
api_key_header = "api_key"
if 'api_key_header' in credentials:
api_key_header = credentials['api_key_header']
if "api_key_header" in credentials:
api_key_header = credentials["api_key_header"]
if 'api_key_value' not in credentials:
raise ToolProviderCredentialValidationError('Missing api_key_value')
elif not isinstance(credentials['api_key_value'], str):
raise ToolProviderCredentialValidationError('api_key_value must be a string')
if "api_key_value" not in credentials:
raise ToolProviderCredentialValidationError("Missing api_key_value")
elif not isinstance(credentials["api_key_value"], str):
raise ToolProviderCredentialValidationError("api_key_value must be a string")
if 'api_key_header_prefix' in credentials:
api_key_header_prefix = credentials['api_key_header_prefix']
if api_key_header_prefix == 'basic' and credentials['api_key_value']:
credentials['api_key_value'] = f'Basic {credentials["api_key_value"]}'
elif api_key_header_prefix == 'bearer' and credentials['api_key_value']:
credentials['api_key_value'] = f'Bearer {credentials["api_key_value"]}'
elif api_key_header_prefix == 'custom':
if "api_key_header_prefix" in credentials:
api_key_header_prefix = credentials["api_key_header_prefix"]
if api_key_header_prefix == "basic" and credentials["api_key_value"]:
credentials["api_key_value"] = f'Basic {credentials["api_key_value"]}'
elif api_key_header_prefix == "bearer" and credentials["api_key_value"]:
credentials["api_key_value"] = f'Bearer {credentials["api_key_value"]}'
elif api_key_header_prefix == "custom":
pass
headers[api_key_header] = credentials['api_key_value']
headers[api_key_header] = credentials["api_key_value"]
needed_parameters = [parameter for parameter in self.api_bundle.parameters if parameter.required]
for parameter in needed_parameters:
@@ -98,13 +99,13 @@ class ApiTool(Tool):
def validate_and_parse_response(self, response: httpx.Response) -> str:
"""
validate the response
validate the response
"""
if isinstance(response, httpx.Response):
if response.status_code >= 400:
raise ToolInvokeError(f"Request failed with status code {response.status_code} and {response.text}")
if not response.content:
return 'Empty response from the tool, please check your parameters and try again.'
return "Empty response from the tool, please check your parameters and try again."
try:
response = response.json()
try:
@@ -114,21 +115,22 @@ class ApiTool(Tool):
except Exception as e:
return response.text
else:
raise ValueError(f'Invalid response type {type(response)}')
raise ValueError(f"Invalid response type {type(response)}")
@staticmethod
def get_parameter_value(parameter, parameters):
if parameter['name'] in parameters:
return parameters[parameter['name']]
elif parameter.get('required', False):
if parameter["name"] in parameters:
return parameters[parameter["name"]]
elif parameter.get("required", False):
raise ToolParameterValidationError(f"Missing required parameter {parameter['name']}")
else:
return (parameter.get('schema', {}) or {}).get('default', '')
return (parameter.get("schema", {}) or {}).get("default", "")
def do_http_request(self, url: str, method: str, headers: dict[str, Any],
parameters: dict[str, Any]) -> httpx.Response:
def do_http_request(
self, url: str, method: str, headers: dict[str, Any], parameters: dict[str, Any]
) -> httpx.Response:
"""
do http request depending on api bundle
do http request depending on api bundle
"""
method = method.lower()
@@ -138,29 +140,30 @@ class ApiTool(Tool):
cookies = {}
# check parameters
for parameter in self.api_bundle.openapi.get('parameters', []):
for parameter in self.api_bundle.openapi.get("parameters", []):
value = self.get_parameter_value(parameter, parameters)
if parameter['in'] == 'path':
path_params[parameter['name']] = value
if parameter["in"] == "path":
path_params[parameter["name"]] = value
elif parameter['in'] == 'query':
if value !='': params[parameter['name']] = value
elif parameter["in"] == "query":
if value != "":
params[parameter["name"]] = value
elif parameter['in'] == 'cookie':
cookies[parameter['name']] = value
elif parameter["in"] == "cookie":
cookies[parameter["name"]] = value
elif parameter['in'] == 'header':
headers[parameter['name']] = value
elif parameter["in"] == "header":
headers[parameter["name"]] = value
# check if there is a request body and handle it
if 'requestBody' in self.api_bundle.openapi and self.api_bundle.openapi['requestBody'] is not None:
if "requestBody" in self.api_bundle.openapi and self.api_bundle.openapi["requestBody"] is not None:
# handle json request body
if 'content' in self.api_bundle.openapi['requestBody']:
for content_type in self.api_bundle.openapi['requestBody']['content']:
headers['Content-Type'] = content_type
body_schema = self.api_bundle.openapi['requestBody']['content'][content_type]['schema']
required = body_schema.get('required', [])
properties = body_schema.get('properties', {})
if "content" in self.api_bundle.openapi["requestBody"]:
for content_type in self.api_bundle.openapi["requestBody"]["content"]:
headers["Content-Type"] = content_type
body_schema = self.api_bundle.openapi["requestBody"]["content"][content_type]["schema"]
required = body_schema.get("required", [])
properties = body_schema.get("properties", {})
for name, property in properties.items():
if name in parameters:
# convert type
@@ -169,63 +172,71 @@ class ApiTool(Tool):
raise ToolParameterValidationError(
f"Missing required parameter {name} in operation {self.api_bundle.operation_id}"
)
elif 'default' in property:
body[name] = property['default']
elif "default" in property:
body[name] = property["default"]
else:
body[name] = None
break
# replace path parameters
for name, value in path_params.items():
url = url.replace(f'{{{name}}}', f'{value}')
url = url.replace(f"{{{name}}}", f"{value}")
# parse http body data if needed, for GET/HEAD/OPTIONS/TRACE, the body is ignored
if 'Content-Type' in headers:
if headers['Content-Type'] == 'application/json':
if "Content-Type" in headers:
if headers["Content-Type"] == "application/json":
body = json.dumps(body)
elif headers['Content-Type'] == 'application/x-www-form-urlencoded':
elif headers["Content-Type"] == "application/x-www-form-urlencoded":
body = urlencode(body)
else:
body = body
if method in ('get', 'head', 'post', 'put', 'delete', 'patch'):
response = getattr(ssrf_proxy, method)(url, params=params, headers=headers, cookies=cookies, data=body,
timeout=API_TOOL_DEFAULT_TIMEOUT, follow_redirects=True)
if method in ("get", "head", "post", "put", "delete", "patch"):
response = getattr(ssrf_proxy, method)(
url,
params=params,
headers=headers,
cookies=cookies,
data=body,
timeout=API_TOOL_DEFAULT_TIMEOUT,
follow_redirects=True,
)
return response
else:
raise ValueError(f'Invalid http method {self.method}')
raise ValueError(f"Invalid http method {self.method}")
def _convert_body_property_any_of(self, property: dict[str, Any], value: Any, any_of: list[dict[str, Any]],
max_recursive=10) -> Any:
def _convert_body_property_any_of(
self, property: dict[str, Any], value: Any, any_of: list[dict[str, Any]], max_recursive=10
) -> Any:
if max_recursive <= 0:
raise Exception("Max recursion depth reached")
for option in any_of or []:
try:
if 'type' in option:
if "type" in option:
# Attempt to convert the value based on the type.
if option['type'] == 'integer' or option['type'] == 'int':
if option["type"] == "integer" or option["type"] == "int":
return int(value)
elif option['type'] == 'number':
if '.' in str(value):
elif option["type"] == "number":
if "." in str(value):
return float(value)
else:
return int(value)
elif option['type'] == 'string':
elif option["type"] == "string":
return str(value)
elif option['type'] == 'boolean':
if str(value).lower() in ['true', '1']:
elif option["type"] == "boolean":
if str(value).lower() in ["true", "1"]:
return True
elif str(value).lower() in ['false', '0']:
elif str(value).lower() in ["false", "0"]:
return False
else:
continue # Not a boolean, try next option
elif option['type'] == 'null' and not value:
elif option["type"] == "null" and not value:
return None
else:
continue # Unsupported type, try next option
elif 'anyOf' in option and isinstance(option['anyOf'], list):
elif "anyOf" in option and isinstance(option["anyOf"], list):
# Recursive call to handle nested anyOf
return self._convert_body_property_any_of(property, value, option['anyOf'], max_recursive - 1)
return self._convert_body_property_any_of(property, value, option["anyOf"], max_recursive - 1)
except ValueError:
continue # Conversion failed, try next option
# If no option succeeded, you might want to return the value as is or raise an error
@@ -233,23 +244,23 @@ class ApiTool(Tool):
def _convert_body_property_type(self, property: dict[str, Any], value: Any) -> Any:
try:
if 'type' in property:
if property['type'] == 'integer' or property['type'] == 'int':
if "type" in property:
if property["type"] == "integer" or property["type"] == "int":
return int(value)
elif property['type'] == 'number':
elif property["type"] == "number":
# check if it is a float
if '.' in str(value):
if "." in str(value):
return float(value)
else:
return int(value)
elif property['type'] == 'string':
elif property["type"] == "string":
return str(value)
elif property['type'] == 'boolean':
elif property["type"] == "boolean":
return bool(value)
elif property['type'] == 'null':
elif property["type"] == "null":
if value is None:
return None
elif property['type'] == 'object' or property['type'] == 'array':
elif property["type"] == "object" or property["type"] == "array":
if isinstance(value, str):
try:
# an array str like '[1,2]' also can convert to list [1,2] through json.loads
@@ -264,8 +275,8 @@ class ApiTool(Tool):
return value
else:
raise ValueError(f"Invalid type {property['type']} for property {property}")
elif 'anyOf' in property and isinstance(property['anyOf'], list):
return self._convert_body_property_any_of(property, value, property['anyOf'])
elif "anyOf" in property and isinstance(property["anyOf"], list):
return self._convert_body_property_any_of(property, value, property["anyOf"])
except ValueError as e:
return value

View File

@@ -1,4 +1,3 @@
from core.model_runtime.entities.llm_entities import LLMResult
from core.model_runtime.entities.message_entities import PromptMessage, SystemPromptMessage, UserPromptMessage
from core.tools.entities.tool_entities import ToolProviderType
@@ -16,40 +15,38 @@ Please summarize the text you got.
class BuiltinTool(Tool):
"""
Builtin tool
Builtin tool
:param meta: the meta data of a tool call processing
:param meta: the meta data of a tool call processing
"""
def invoke_model(
self, user_id: str, prompt_messages: list[PromptMessage], stop: list[str]
) -> LLMResult:
def invoke_model(self, user_id: str, prompt_messages: list[PromptMessage], stop: list[str]) -> LLMResult:
"""
invoke model
invoke model
:param model_config: the model config
:param prompt_messages: the prompt messages
:param stop: the stop words
:return: the model result
:param model_config: the model config
:param prompt_messages: the prompt messages
:param stop: the stop words
:return: the model result
"""
# invoke model
return ModelInvocationUtils.invoke(
user_id=user_id,
tenant_id=self.runtime.tenant_id,
tool_type='builtin',
tool_type="builtin",
tool_name=self.identity.name,
prompt_messages=prompt_messages,
)
def tool_provider_type(self) -> ToolProviderType:
return ToolProviderType.BUILT_IN
def get_max_tokens(self) -> int:
"""
get max tokens
get max tokens
:param model_config: the model config
:return: the max tokens
:param model_config: the model config
:return: the max tokens
"""
return ModelInvocationUtils.get_max_llm_context_tokens(
tenant_id=self.runtime.tenant_id,
@@ -57,39 +54,34 @@ class BuiltinTool(Tool):
def get_prompt_tokens(self, prompt_messages: list[PromptMessage]) -> int:
"""
get prompt tokens
get prompt tokens
:param prompt_messages: the prompt messages
:return: the tokens
:param prompt_messages: the prompt messages
:return: the tokens
"""
return ModelInvocationUtils.calculate_tokens(
tenant_id=self.runtime.tenant_id,
prompt_messages=prompt_messages
)
return ModelInvocationUtils.calculate_tokens(tenant_id=self.runtime.tenant_id, prompt_messages=prompt_messages)
def summary(self, user_id: str, content: str) -> str:
max_tokens = self.get_max_tokens()
if self.get_prompt_tokens(prompt_messages=[
UserPromptMessage(content=content)
]) < max_tokens * 0.6:
if self.get_prompt_tokens(prompt_messages=[UserPromptMessage(content=content)]) < max_tokens * 0.6:
return content
def get_prompt_tokens(content: str) -> int:
return self.get_prompt_tokens(prompt_messages=[
SystemPromptMessage(content=_SUMMARY_PROMPT),
UserPromptMessage(content=content)
])
return self.get_prompt_tokens(
prompt_messages=[SystemPromptMessage(content=_SUMMARY_PROMPT), UserPromptMessage(content=content)]
)
def summarize(content: str) -> str:
summary = self.invoke_model(user_id=user_id, prompt_messages=[
SystemPromptMessage(content=_SUMMARY_PROMPT),
UserPromptMessage(content=content)
], stop=[])
summary = self.invoke_model(
user_id=user_id,
prompt_messages=[SystemPromptMessage(content=_SUMMARY_PROMPT), UserPromptMessage(content=content)],
stop=[],
)
return summary.message.content
lines = content.split('\n')
lines = content.split("\n")
new_lines = []
# split long line into multiple lines
for i in range(len(lines)):
@@ -100,8 +92,8 @@ class BuiltinTool(Tool):
new_lines.append(line)
elif get_prompt_tokens(line) > max_tokens * 0.7:
while get_prompt_tokens(line) > max_tokens * 0.7:
new_lines.append(line[:int(max_tokens * 0.5)])
line = line[int(max_tokens * 0.5):]
new_lines.append(line[: int(max_tokens * 0.5)])
line = line[int(max_tokens * 0.5) :]
new_lines.append(line)
else:
new_lines.append(line)
@@ -125,17 +117,15 @@ class BuiltinTool(Tool):
summary = summarize(message)
summaries.append(summary)
result = '\n'.join(summaries)
result = "\n".join(summaries)
if self.get_prompt_tokens(prompt_messages=[
UserPromptMessage(content=result)
]) > max_tokens * 0.7:
if self.get_prompt_tokens(prompt_messages=[UserPromptMessage(content=result)]) > max_tokens * 0.7:
return self.summary(user_id=user_id, content=result)
return result
def get_url(self, url: str, user_agent: str = None) -> str:
"""
get url
get url
"""
return get_url(url, user_agent=user_agent)
return get_url(url, user_agent=user_agent)

View File

@@ -14,14 +14,11 @@ from extensions.ext_database import db
from models.dataset import Dataset, Document, DocumentSegment
default_retrieval_model = {
'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
'reranking_enable': False,
'reranking_model': {
'reranking_provider_name': '',
'reranking_model_name': ''
},
'top_k': 2,
'score_threshold_enabled': False
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
"reranking_enable": False,
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
"top_k": 2,
"score_threshold_enabled": False,
}
@@ -31,6 +28,7 @@ class DatasetMultiRetrieverToolInput(BaseModel):
class DatasetMultiRetrieverTool(DatasetRetrieverBaseTool):
"""Tool for querying multi dataset."""
name: str = "dataset_"
args_schema: type[BaseModel] = DatasetMultiRetrieverToolInput
description: str = "dataset multi retriever and rerank. "
@@ -38,27 +36,26 @@ class DatasetMultiRetrieverTool(DatasetRetrieverBaseTool):
reranking_provider_name: str
reranking_model_name: str
@classmethod
def from_dataset(cls, dataset_ids: list[str], tenant_id: str, **kwargs):
return cls(
name=f"dataset_{tenant_id.replace('-', '_')}",
tenant_id=tenant_id,
dataset_ids=dataset_ids,
**kwargs
name=f"dataset_{tenant_id.replace('-', '_')}", tenant_id=tenant_id, dataset_ids=dataset_ids, **kwargs
)
def _run(self, query: str) -> str:
threads = []
all_documents = []
for dataset_id in self.dataset_ids:
retrieval_thread = threading.Thread(target=self._retriever, kwargs={
'flask_app': current_app._get_current_object(),
'dataset_id': dataset_id,
'query': query,
'all_documents': all_documents,
'hit_callbacks': self.hit_callbacks
})
retrieval_thread = threading.Thread(
target=self._retriever,
kwargs={
"flask_app": current_app._get_current_object(),
"dataset_id": dataset_id,
"query": query,
"all_documents": all_documents,
"hit_callbacks": self.hit_callbacks,
},
)
threads.append(retrieval_thread)
retrieval_thread.start()
for thread in threads:
@@ -69,7 +66,7 @@ class DatasetMultiRetrieverTool(DatasetRetrieverBaseTool):
tenant_id=self.tenant_id,
provider=self.reranking_provider_name,
model_type=ModelType.RERANK,
model=self.reranking_model_name
model=self.reranking_model_name,
)
rerank_runner = RerankModelRunner(rerank_model_instance)
@@ -80,62 +77,61 @@ class DatasetMultiRetrieverTool(DatasetRetrieverBaseTool):
document_score_list = {}
for item in all_documents:
if item.metadata.get('score'):
document_score_list[item.metadata['doc_id']] = item.metadata['score']
if item.metadata.get("score"):
document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
document_context_list = []
index_node_ids = [document.metadata['doc_id'] for document in all_documents]
index_node_ids = [document.metadata["doc_id"] for document in all_documents]
segments = DocumentSegment.query.filter(
DocumentSegment.dataset_id.in_(self.dataset_ids),
DocumentSegment.completed_at.isnot(None),
DocumentSegment.status == 'completed',
DocumentSegment.status == "completed",
DocumentSegment.enabled == True,
DocumentSegment.index_node_id.in_(index_node_ids)
DocumentSegment.index_node_id.in_(index_node_ids),
).all()
if segments:
index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
sorted_segments = sorted(segments,
key=lambda segment: index_node_id_to_position.get(segment.index_node_id,
float('inf')))
sorted_segments = sorted(
segments, key=lambda segment: index_node_id_to_position.get(segment.index_node_id, float("inf"))
)
for segment in sorted_segments:
if segment.answer:
document_context_list.append(f'question:{segment.get_sign_content()} answer:{segment.answer}')
document_context_list.append(f"question:{segment.get_sign_content()} answer:{segment.answer}")
else:
document_context_list.append(segment.get_sign_content())
if self.return_resource:
context_list = []
resource_number = 1
for segment in sorted_segments:
dataset = Dataset.query.filter_by(
id=segment.dataset_id
dataset = Dataset.query.filter_by(id=segment.dataset_id).first()
document = Document.query.filter(
Document.id == segment.document_id,
Document.enabled == True,
Document.archived == False,
).first()
document = Document.query.filter(Document.id == segment.document_id,
Document.enabled == True,
Document.archived == False,
).first()
if dataset and document:
source = {
'position': resource_number,
'dataset_id': dataset.id,
'dataset_name': dataset.name,
'document_id': document.id,
'document_name': document.name,
'data_source_type': document.data_source_type,
'segment_id': segment.id,
'retriever_from': self.retriever_from,
'score': document_score_list.get(segment.index_node_id, None)
"position": resource_number,
"dataset_id": dataset.id,
"dataset_name": dataset.name,
"document_id": document.id,
"document_name": document.name,
"data_source_type": document.data_source_type,
"segment_id": segment.id,
"retriever_from": self.retriever_from,
"score": document_score_list.get(segment.index_node_id, None),
}
if self.retriever_from == 'dev':
source['hit_count'] = segment.hit_count
source['word_count'] = segment.word_count
source['segment_position'] = segment.position
source['index_node_hash'] = segment.index_node_hash
if self.retriever_from == "dev":
source["hit_count"] = segment.hit_count
source["word_count"] = segment.word_count
source["segment_position"] = segment.position
source["index_node_hash"] = segment.index_node_hash
if segment.answer:
source['content'] = f'question:{segment.content} \nanswer:{segment.answer}'
source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
else:
source['content'] = segment.content
source["content"] = segment.content
context_list.append(source)
resource_number += 1
@@ -144,13 +140,18 @@ class DatasetMultiRetrieverTool(DatasetRetrieverBaseTool):
return str("\n".join(document_context_list))
def _retriever(self, flask_app: Flask, dataset_id: str, query: str, all_documents: list,
hit_callbacks: list[DatasetIndexToolCallbackHandler]):
def _retriever(
self,
flask_app: Flask,
dataset_id: str,
query: str,
all_documents: list,
hit_callbacks: list[DatasetIndexToolCallbackHandler],
):
with flask_app.app_context():
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == self.tenant_id,
Dataset.id == dataset_id
).first()
dataset = (
db.session.query(Dataset).filter(Dataset.tenant_id == self.tenant_id, Dataset.id == dataset_id).first()
)
if not dataset:
return []
@@ -163,27 +164,29 @@ class DatasetMultiRetrieverTool(DatasetRetrieverBaseTool):
if dataset.indexing_technique == "economy":
# use keyword table query
documents = RetrievalService.retrieve(retrieval_method='keyword_search',
dataset_id=dataset.id,
query=query,
top_k=self.top_k
)
documents = RetrievalService.retrieve(
retrieval_method="keyword_search", dataset_id=dataset.id, query=query, top_k=self.top_k
)
if documents:
all_documents.extend(documents)
else:
if self.top_k > 0:
# retrieval source
documents = RetrievalService.retrieve(retrieval_method=retrieval_model['search_method'],
dataset_id=dataset.id,
query=query,
top_k=self.top_k,
score_threshold=retrieval_model.get('score_threshold', .0)
if retrieval_model['score_threshold_enabled'] else None,
reranking_model=retrieval_model.get('reranking_model', None)
if retrieval_model['reranking_enable'] else None,
reranking_mode=retrieval_model.get('reranking_mode')
if retrieval_model.get('reranking_mode') else 'reranking_model',
weights=retrieval_model.get('weights', None),
)
documents = RetrievalService.retrieve(
retrieval_method=retrieval_model["search_method"],
dataset_id=dataset.id,
query=query,
top_k=self.top_k,
score_threshold=retrieval_model.get("score_threshold", 0.0)
if retrieval_model["score_threshold_enabled"]
else None,
reranking_model=retrieval_model.get("reranking_model", None)
if retrieval_model["reranking_enable"]
else None,
reranking_mode=retrieval_model.get("reranking_mode")
if retrieval_model.get("reranking_mode")
else "reranking_model",
weights=retrieval_model.get("weights", None),
)
all_documents.extend(documents)
all_documents.extend(documents)

View File

@@ -9,6 +9,7 @@ from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCa
class DatasetRetrieverBaseTool(BaseModel, ABC):
"""Tool for querying a Dataset."""
name: str = "dataset"
description: str = "use this to retrieve a dataset. "
tenant_id: str

View File

@@ -1,4 +1,3 @@
from pydantic import BaseModel, Field
from core.rag.datasource.retrieval_service import RetrievalService
@@ -8,15 +7,12 @@ from extensions.ext_database import db
from models.dataset import Dataset, Document, DocumentSegment
default_retrieval_model = {
'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
'reranking_enable': False,
'reranking_model': {
'reranking_provider_name': '',
'reranking_model_name': ''
},
'reranking_mode': 'reranking_model',
'top_k': 2,
'score_threshold_enabled': False
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
"reranking_enable": False,
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
"reranking_mode": "reranking_model",
"top_k": 2,
"score_threshold_enabled": False,
}
@@ -26,35 +22,34 @@ class DatasetRetrieverToolInput(BaseModel):
class DatasetRetrieverTool(DatasetRetrieverBaseTool):
"""Tool for querying a Dataset."""
name: str = "dataset"
args_schema: type[BaseModel] = DatasetRetrieverToolInput
description: str = "use this to retrieve a dataset. "
dataset_id: str
@classmethod
def from_dataset(cls, dataset: Dataset, **kwargs):
description = dataset.description
if not description:
description = 'useful for when you want to answer queries about the ' + dataset.name
description = "useful for when you want to answer queries about the " + dataset.name
description = description.replace('\n', '').replace('\r', '')
description = description.replace("\n", "").replace("\r", "")
return cls(
name=f"dataset_{dataset.id.replace('-', '_')}",
tenant_id=dataset.tenant_id,
dataset_id=dataset.id,
description=description,
**kwargs
**kwargs,
)
def _run(self, query: str) -> str:
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == self.tenant_id,
Dataset.id == self.dataset_id
).first()
dataset = (
db.session.query(Dataset).filter(Dataset.tenant_id == self.tenant_id, Dataset.id == self.dataset_id).first()
)
if not dataset:
return ''
return ""
for hit_callback in self.hit_callbacks:
hit_callback.on_query(query, dataset.id)
@@ -63,27 +58,29 @@ class DatasetRetrieverTool(DatasetRetrieverBaseTool):
retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
if dataset.indexing_technique == "economy":
# use keyword table query
documents = RetrievalService.retrieve(retrieval_method='keyword_search',
dataset_id=dataset.id,
query=query,
top_k=self.top_k
)
documents = RetrievalService.retrieve(
retrieval_method="keyword_search", dataset_id=dataset.id, query=query, top_k=self.top_k
)
return str("\n".join([document.page_content for document in documents]))
else:
if self.top_k > 0:
# retrieval source
documents = RetrievalService.retrieve(retrieval_method=retrieval_model.get('search_method', 'semantic_search'),
dataset_id=dataset.id,
query=query,
top_k=self.top_k,
score_threshold=retrieval_model.get('score_threshold', .0)
if retrieval_model['score_threshold_enabled'] else None,
reranking_model=retrieval_model.get('reranking_model', None)
if retrieval_model['reranking_enable'] else None,
reranking_mode=retrieval_model.get('reranking_mode')
if retrieval_model.get('reranking_mode') else 'reranking_model',
weights=retrieval_model.get('weights', None),
)
documents = RetrievalService.retrieve(
retrieval_method=retrieval_model.get("search_method", "semantic_search"),
dataset_id=dataset.id,
query=query,
top_k=self.top_k,
score_threshold=retrieval_model.get("score_threshold", 0.0)
if retrieval_model["score_threshold_enabled"]
else None,
reranking_model=retrieval_model.get("reranking_model", None)
if retrieval_model["reranking_enable"]
else None,
reranking_mode=retrieval_model.get("reranking_mode")
if retrieval_model.get("reranking_mode")
else "reranking_model",
weights=retrieval_model.get("weights", None),
)
else:
documents = []
@@ -92,25 +89,26 @@ class DatasetRetrieverTool(DatasetRetrieverBaseTool):
document_score_list = {}
if dataset.indexing_technique != "economy":
for item in documents:
if item.metadata.get('score'):
document_score_list[item.metadata['doc_id']] = item.metadata['score']
if item.metadata.get("score"):
document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
document_context_list = []
index_node_ids = [document.metadata['doc_id'] for document in documents]
segments = DocumentSegment.query.filter(DocumentSegment.dataset_id == self.dataset_id,
DocumentSegment.completed_at.isnot(None),
DocumentSegment.status == 'completed',
DocumentSegment.enabled == True,
DocumentSegment.index_node_id.in_(index_node_ids)
).all()
index_node_ids = [document.metadata["doc_id"] for document in documents]
segments = DocumentSegment.query.filter(
DocumentSegment.dataset_id == self.dataset_id,
DocumentSegment.completed_at.isnot(None),
DocumentSegment.status == "completed",
DocumentSegment.enabled == True,
DocumentSegment.index_node_id.in_(index_node_ids),
).all()
if segments:
index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
sorted_segments = sorted(segments,
key=lambda segment: index_node_id_to_position.get(segment.index_node_id,
float('inf')))
sorted_segments = sorted(
segments, key=lambda segment: index_node_id_to_position.get(segment.index_node_id, float("inf"))
)
for segment in sorted_segments:
if segment.answer:
document_context_list.append(f'question:{segment.get_sign_content()} answer:{segment.answer}')
document_context_list.append(f"question:{segment.get_sign_content()} answer:{segment.answer}")
else:
document_context_list.append(segment.get_sign_content())
if self.return_resource:
@@ -118,36 +116,36 @@ class DatasetRetrieverTool(DatasetRetrieverBaseTool):
resource_number = 1
for segment in sorted_segments:
context = {}
document = Document.query.filter(Document.id == segment.document_id,
Document.enabled == True,
Document.archived == False,
).first()
document = Document.query.filter(
Document.id == segment.document_id,
Document.enabled == True,
Document.archived == False,
).first()
if dataset and document:
source = {
'position': resource_number,
'dataset_id': dataset.id,
'dataset_name': dataset.name,
'document_id': document.id,
'document_name': document.name,
'data_source_type': document.data_source_type,
'segment_id': segment.id,
'retriever_from': self.retriever_from,
'score': document_score_list.get(segment.index_node_id, None)
"position": resource_number,
"dataset_id": dataset.id,
"dataset_name": dataset.name,
"document_id": document.id,
"document_name": document.name,
"data_source_type": document.data_source_type,
"segment_id": segment.id,
"retriever_from": self.retriever_from,
"score": document_score_list.get(segment.index_node_id, None),
}
if self.retriever_from == 'dev':
source['hit_count'] = segment.hit_count
source['word_count'] = segment.word_count
source['segment_position'] = segment.position
source['index_node_hash'] = segment.index_node_hash
if self.retriever_from == "dev":
source["hit_count"] = segment.hit_count
source["word_count"] = segment.word_count
source["segment_position"] = segment.position
source["index_node_hash"] = segment.index_node_hash
if segment.answer:
source['content'] = f'question:{segment.content} \nanswer:{segment.answer}'
source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
else:
source['content'] = segment.content
source["content"] = segment.content
context_list.append(source)
resource_number += 1
for hit_callback in self.hit_callbacks:
hit_callback.return_retriever_resource_info(context_list)
return str("\n".join(document_context_list))
return str("\n".join(document_context_list))

View File

@@ -20,13 +20,14 @@ class DatasetRetrieverTool(Tool):
retrieval_tool: DatasetRetrieverBaseTool
@staticmethod
def get_dataset_tools(tenant_id: str,
dataset_ids: list[str],
retrieve_config: DatasetRetrieveConfigEntity,
return_resource: bool,
invoke_from: InvokeFrom,
hit_callback: DatasetIndexToolCallbackHandler
) -> list['DatasetRetrieverTool']:
def get_dataset_tools(
tenant_id: str,
dataset_ids: list[str],
retrieve_config: DatasetRetrieveConfigEntity,
return_resource: bool,
invoke_from: InvokeFrom,
hit_callback: DatasetIndexToolCallbackHandler,
) -> list["DatasetRetrieverTool"]:
"""
get dataset tool
"""
@@ -48,7 +49,7 @@ class DatasetRetrieverTool(Tool):
retrieve_config=retrieve_config,
return_resource=return_resource,
invoke_from=invoke_from,
hit_callback=hit_callback
hit_callback=hit_callback,
)
# restore retrieve strategy
retrieve_config.retrieve_strategy = original_retriever_mode
@@ -58,13 +59,13 @@ class DatasetRetrieverTool(Tool):
for retrieval_tool in retrieval_tools:
tool = DatasetRetrieverTool(
retrieval_tool=retrieval_tool,
identity=ToolIdentity(provider='', author='', name=retrieval_tool.name, label=I18nObject(en_US='', zh_Hans='')),
identity=ToolIdentity(
provider="", author="", name=retrieval_tool.name, label=I18nObject(en_US="", zh_Hans="")
),
parameters=[],
is_team_authorization=True,
description=ToolDescription(
human=I18nObject(en_US='', zh_Hans=''),
llm=retrieval_tool.description),
runtime=DatasetRetrieverTool.Runtime()
description=ToolDescription(human=I18nObject(en_US="", zh_Hans=""), llm=retrieval_tool.description),
runtime=DatasetRetrieverTool.Runtime(),
)
tools.append(tool)
@@ -73,16 +74,18 @@ class DatasetRetrieverTool(Tool):
def get_runtime_parameters(self) -> list[ToolParameter]:
return [
ToolParameter(name='query',
label=I18nObject(en_US='', zh_Hans=''),
human_description=I18nObject(en_US='', zh_Hans=''),
type=ToolParameter.ToolParameterType.STRING,
form=ToolParameter.ToolParameterForm.LLM,
llm_description='Query for the dataset to be used to retrieve the dataset.',
required=True,
default=''),
ToolParameter(
name="query",
label=I18nObject(en_US="", zh_Hans=""),
human_description=I18nObject(en_US="", zh_Hans=""),
type=ToolParameter.ToolParameterType.STRING,
form=ToolParameter.ToolParameterForm.LLM,
llm_description="Query for the dataset to be used to retrieve the dataset.",
required=True,
default="",
),
]
def tool_provider_type(self) -> ToolProviderType:
return ToolProviderType.DATASET_RETRIEVAL
@@ -90,9 +93,9 @@ class DatasetRetrieverTool(Tool):
"""
invoke dataset retriever tool
"""
query = tool_parameters.get('query')
query = tool_parameters.get("query")
if not query:
return self.create_text_message(text='please input query')
return self.create_text_message(text="please input query")
# invoke dataset retriever tool
result = self.retrieval_tool._run(query=query)

View File

@@ -35,15 +35,16 @@ class Tool(BaseModel, ABC):
# pydantic configs
model_config = ConfigDict(protected_namespaces=())
@field_validator('parameters', mode='before')
@field_validator("parameters", mode="before")
@classmethod
def set_parameters(cls, v, validation_info: ValidationInfo) -> list[ToolParameter]:
return v or []
class Runtime(BaseModel):
"""
Meta data of a tool call processing
Meta data of a tool call processing
"""
def __init__(self, **data: Any):
super().__init__(**data)
if not self.runtime_parameters:
@@ -63,14 +64,14 @@ class Tool(BaseModel, ABC):
super().__init__(**data)
class VARIABLE_KEY(Enum):
IMAGE = 'image'
IMAGE = "image"
def fork_tool_runtime(self, runtime: dict[str, Any]) -> 'Tool':
def fork_tool_runtime(self, runtime: dict[str, Any]) -> "Tool":
"""
fork a new tool with meta data
fork a new tool with meta data
:param meta: the meta data of a tool call processing, tenant_id is required
:return: the new tool
:param meta: the meta data of a tool call processing, tenant_id is required
:return: the new tool
"""
return self.__class__(
identity=self.identity.model_copy() if self.identity else None,
@@ -82,22 +83,22 @@ class Tool(BaseModel, ABC):
@abstractmethod
def tool_provider_type(self) -> ToolProviderType:
"""
get the tool provider type
get the tool provider type
:return: the tool provider type
:return: the tool provider type
"""
def load_variables(self, variables: ToolRuntimeVariablePool):
"""
load variables from database
load variables from database
:param conversation_id: the conversation id
:param conversation_id: the conversation id
"""
self.variables = variables
def set_image_variable(self, variable_name: str, image_key: str) -> None:
"""
set an image variable
set an image variable
"""
if not self.variables:
return
@@ -106,7 +107,7 @@ class Tool(BaseModel, ABC):
def set_text_variable(self, variable_name: str, text: str) -> None:
"""
set a text variable
set a text variable
"""
if not self.variables:
return
@@ -115,10 +116,10 @@ class Tool(BaseModel, ABC):
def get_variable(self, name: Union[str, Enum]) -> Optional[ToolRuntimeVariable]:
"""
get a variable
get a variable
:param name: the name of the variable
:return: the variable
:param name: the name of the variable
:return: the variable
"""
if not self.variables:
return None
@@ -134,9 +135,9 @@ class Tool(BaseModel, ABC):
def get_default_image_variable(self) -> Optional[ToolRuntimeVariable]:
"""
get the default image variable
get the default image variable
:return: the image variable
:return: the image variable
"""
if not self.variables:
return None
@@ -145,10 +146,10 @@ class Tool(BaseModel, ABC):
def get_variable_file(self, name: Union[str, Enum]) -> Optional[bytes]:
"""
get a variable file
get a variable file
:param name: the name of the variable
:return: the variable file
:param name: the name of the variable
:return: the variable file
"""
variable = self.get_variable(name)
if not variable:
@@ -167,9 +168,9 @@ class Tool(BaseModel, ABC):
def list_variables(self) -> list[ToolRuntimeVariable]:
"""
list all variables
list all variables
:return: the variables
:return: the variables
"""
if not self.variables:
return []
@@ -178,9 +179,9 @@ class Tool(BaseModel, ABC):
def list_default_image_variables(self) -> list[ToolRuntimeVariable]:
"""
list all image variables
list all image variables
:return: the image variables
:return: the image variables
"""
if not self.variables:
return []
@@ -220,38 +221,42 @@ class Tool(BaseModel, ABC):
result = deepcopy(tool_parameters)
for parameter in self.parameters or []:
if parameter.name in tool_parameters:
result[parameter.name] = ToolParameterConverter.cast_parameter_by_type(tool_parameters[parameter.name], parameter.type)
result[parameter.name] = ToolParameterConverter.cast_parameter_by_type(
tool_parameters[parameter.name], parameter.type
)
return result
@abstractmethod
def _invoke(self, user_id: str, tool_parameters: dict[str, Any]) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
def _invoke(
self, user_id: str, tool_parameters: dict[str, Any]
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
pass
def validate_credentials(self, credentials: dict[str, Any], parameters: dict[str, Any]) -> None:
"""
validate the credentials
validate the credentials
:param credentials: the credentials
:param parameters: the parameters
:param credentials: the credentials
:param parameters: the parameters
"""
pass
def get_runtime_parameters(self) -> list[ToolParameter]:
"""
get the runtime parameters
get the runtime parameters
interface for developer to dynamic change the parameters of a tool depends on the variables pool
interface for developer to dynamic change the parameters of a tool depends on the variables pool
:return: the runtime parameters
:return: the runtime parameters
"""
return self.parameters or []
def get_all_runtime_parameters(self) -> list[ToolParameter]:
"""
get all runtime parameters
get all runtime parameters
:return: all runtime parameters
:return: all runtime parameters
"""
parameters = self.parameters or []
parameters = parameters.copy()
@@ -281,67 +286,49 @@ class Tool(BaseModel, ABC):
return parameters
def create_image_message(self, image: str, save_as: str = '') -> ToolInvokeMessage:
def create_image_message(self, image: str, save_as: str = "") -> ToolInvokeMessage:
"""
create an image message
create an image message
:param image: the url of the image
:return: the image message
:param image: the url of the image
:return: the image message
"""
return ToolInvokeMessage(type=ToolInvokeMessage.MessageType.IMAGE,
message=image,
save_as=save_as)
return ToolInvokeMessage(type=ToolInvokeMessage.MessageType.IMAGE, message=image, save_as=save_as)
def create_file_var_message(self, file_var: "FileVar") -> ToolInvokeMessage:
return ToolInvokeMessage(type=ToolInvokeMessage.MessageType.FILE_VAR,
message='',
meta={
'file_var': file_var
},
save_as='')
def create_link_message(self, link: str, save_as: str = '') -> ToolInvokeMessage:
"""
create a link message
:param link: the url of the link
:return: the link message
"""
return ToolInvokeMessage(type=ToolInvokeMessage.MessageType.LINK,
message=link,
save_as=save_as)
def create_text_message(self, text: str, save_as: str = '') -> ToolInvokeMessage:
"""
create a text message
:param text: the text
:return: the text message
"""
return ToolInvokeMessage(
type=ToolInvokeMessage.MessageType.TEXT,
message=text,
save_as=save_as
type=ToolInvokeMessage.MessageType.FILE_VAR, message="", meta={"file_var": file_var}, save_as=""
)
def create_blob_message(self, blob: bytes, meta: dict = None, save_as: str = '') -> ToolInvokeMessage:
def create_link_message(self, link: str, save_as: str = "") -> ToolInvokeMessage:
"""
create a blob message
create a link message
:param blob: the blob
:return: the blob message
:param link: the url of the link
:return: the link message
"""
return ToolInvokeMessage(
type=ToolInvokeMessage.MessageType.BLOB,
message=blob, meta=meta,
save_as=save_as
)
return ToolInvokeMessage(type=ToolInvokeMessage.MessageType.LINK, message=link, save_as=save_as)
def create_text_message(self, text: str, save_as: str = "") -> ToolInvokeMessage:
"""
create a text message
:param text: the text
:return: the text message
"""
return ToolInvokeMessage(type=ToolInvokeMessage.MessageType.TEXT, message=text, save_as=save_as)
def create_blob_message(self, blob: bytes, meta: dict = None, save_as: str = "") -> ToolInvokeMessage:
"""
create a blob message
:param blob: the blob
:return: the blob message
"""
return ToolInvokeMessage(type=ToolInvokeMessage.MessageType.BLOB, message=blob, meta=meta, save_as=save_as)
def create_json_message(self, object: dict) -> ToolInvokeMessage:
"""
create a json message
create a json message
"""
return ToolInvokeMessage(
type=ToolInvokeMessage.MessageType.JSON,
message=object
)
return ToolInvokeMessage(type=ToolInvokeMessage.MessageType.JSON, message=object)

View File

@@ -13,6 +13,7 @@ from models.workflow import Workflow
logger = logging.getLogger(__name__)
class WorkflowTool(Tool):
workflow_app_id: str
version: str
@@ -25,11 +26,12 @@ class WorkflowTool(Tool):
"""
Workflow tool.
"""
def tool_provider_type(self) -> ToolProviderType:
"""
get the tool provider type
get the tool provider type
:return: the tool provider type
:return: the tool provider type
"""
return ToolProviderType.WORKFLOW
@@ -37,7 +39,7 @@ class WorkflowTool(Tool):
self, user_id: str, tool_parameters: dict[str, Any]
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
"""
invoke the tool
invoke the tool
"""
app = self._get_app(app_id=self.workflow_app_id)
workflow = self._get_workflow(app_id=self.workflow_app_id, version=self.version)
@@ -46,33 +48,31 @@ class WorkflowTool(Tool):
tool_parameters, files = self._transform_args(tool_parameters)
from core.app.apps.workflow.app_generator import WorkflowAppGenerator
generator = WorkflowAppGenerator()
result = generator.generate(
app_model=app,
workflow=workflow,
user=self._get_user(user_id),
args={
'inputs': tool_parameters,
'files': files
},
app_model=app,
workflow=workflow,
user=self._get_user(user_id),
args={"inputs": tool_parameters, "files": files},
invoke_from=self.runtime.invoke_from,
stream=False,
call_depth=self.workflow_call_depth + 1,
workflow_thread_pool_id=self.thread_pool_id
workflow_thread_pool_id=self.thread_pool_id,
)
data = result.get('data', {})
data = result.get("data", {})
if data.get("error"):
raise Exception(data.get("error"))
if data.get('error'):
raise Exception(data.get('error'))
result = []
outputs = data.get('outputs', {})
outputs = data.get("outputs", {})
outputs, files = self._extract_files(outputs)
for file in files:
result.append(self.create_file_var_message(file))
result.append(self.create_text_message(json.dumps(outputs, ensure_ascii=False)))
result.append(self.create_json_message(outputs))
@@ -80,7 +80,7 @@ class WorkflowTool(Tool):
def _get_user(self, user_id: str) -> Union[EndUser, Account]:
"""
get the user by user id
get the user by user id
"""
user = db.session.query(EndUser).filter(EndUser.id == user_id).first()
@@ -88,16 +88,16 @@ class WorkflowTool(Tool):
user = db.session.query(Account).filter(Account.id == user_id).first()
if not user:
raise ValueError('user not found')
raise ValueError("user not found")
return user
def fork_tool_runtime(self, runtime: dict[str, Any]) -> 'WorkflowTool':
def fork_tool_runtime(self, runtime: dict[str, Any]) -> "WorkflowTool":
"""
fork a new tool with meta data
fork a new tool with meta data
:param meta: the meta data of a tool call processing, tenant_id is required
:return: the new tool
:param meta: the meta data of a tool call processing, tenant_id is required
:return: the new tool
"""
return self.__class__(
identity=deepcopy(self.identity),
@@ -108,45 +108,44 @@ class WorkflowTool(Tool):
workflow_entities=self.workflow_entities,
workflow_call_depth=self.workflow_call_depth,
version=self.version,
label=self.label
label=self.label,
)
def _get_workflow(self, app_id: str, version: str) -> Workflow:
"""
get the workflow by app id and version
get the workflow by app id and version
"""
if not version:
workflow = db.session.query(Workflow).filter(
Workflow.app_id == app_id,
Workflow.version != 'draft'
).order_by(Workflow.created_at.desc()).first()
workflow = (
db.session.query(Workflow)
.filter(Workflow.app_id == app_id, Workflow.version != "draft")
.order_by(Workflow.created_at.desc())
.first()
)
else:
workflow = db.session.query(Workflow).filter(
Workflow.app_id == app_id,
Workflow.version == version
).first()
workflow = db.session.query(Workflow).filter(Workflow.app_id == app_id, Workflow.version == version).first()
if not workflow:
raise ValueError('workflow not found or not published')
raise ValueError("workflow not found or not published")
return workflow
def _get_app(self, app_id: str) -> App:
"""
get the app by app id
get the app by app id
"""
app = db.session.query(App).filter(App.id == app_id).first()
if not app:
raise ValueError('app not found')
raise ValueError("app not found")
return app
def _transform_args(self, tool_parameters: dict) -> tuple[dict, list[dict]]:
"""
transform the tool parameters
transform the tool parameters
:param tool_parameters: the tool parameters
:return: tool_parameters, files
:param tool_parameters: the tool parameters
:return: tool_parameters, files
"""
parameter_rules = self.get_all_runtime_parameters()
parameters_result = {}
@@ -159,15 +158,15 @@ class WorkflowTool(Tool):
file_var_list = [FileVar(**f) for f in file]
for file_var in file_var_list:
file_dict = {
'transfer_method': file_var.transfer_method.value,
'type': file_var.type.value,
"transfer_method": file_var.transfer_method.value,
"type": file_var.type.value,
}
if file_var.transfer_method == FileTransferMethod.TOOL_FILE:
file_dict['tool_file_id'] = file_var.related_id
file_dict["tool_file_id"] = file_var.related_id
elif file_var.transfer_method == FileTransferMethod.LOCAL_FILE:
file_dict['upload_file_id'] = file_var.related_id
file_dict["upload_file_id"] = file_var.related_id
elif file_var.transfer_method == FileTransferMethod.REMOTE_URL:
file_dict['url'] = file_var.preview_url
file_dict["url"] = file_var.preview_url
files.append(file_dict)
except Exception as e:
@@ -176,13 +175,13 @@ class WorkflowTool(Tool):
parameters_result[parameter.name] = tool_parameters.get(parameter.name)
return parameters_result, files
def _extract_files(self, outputs: dict) -> tuple[dict, list[FileVar]]:
"""
extract files from the result
extract files from the result
:param result: the result
:return: the result, files
:param result: the result
:return: the result, files
"""
files = []
result = {}
@@ -190,7 +189,7 @@ class WorkflowTool(Tool):
if isinstance(value, list):
has_file = False
for item in value:
if isinstance(item, dict) and item.get('__variant') == 'FileVar':
if isinstance(item, dict) and item.get("__variant") == "FileVar":
try:
files.append(FileVar(**item))
has_file = True
@@ -201,4 +200,4 @@ class WorkflowTool(Tool):
result[key] = value
return result, files
return result, files