mirror of
http://112.124.100.131/huang.ze/ebiz-dify-ai.git
synced 2025-12-25 02:33:00 +08:00
feat: xinference rerank model support (#1615)
This commit is contained in:
@@ -0,0 +1,58 @@
|
||||
import logging
|
||||
from typing import Optional, List
|
||||
|
||||
from langchain.schema import Document
|
||||
from xinference_client.client.restful.restful_client import Client
|
||||
|
||||
from core.model_providers.error import LLMBadRequestError
|
||||
from core.model_providers.models.reranking.base import BaseReranking
|
||||
from core.model_providers.providers.base import BaseModelProvider
|
||||
|
||||
|
||||
class XinferenceReranking(BaseReranking):
|
||||
|
||||
def __init__(self, model_provider: BaseModelProvider, name: str):
|
||||
self.credentials = model_provider.get_model_credentials(
|
||||
model_name=name,
|
||||
model_type=self.type
|
||||
)
|
||||
|
||||
client = Client(self.credentials['server_url'])
|
||||
|
||||
super().__init__(model_provider, client, name)
|
||||
|
||||
def rerank(self, query: str, documents: List[Document], score_threshold: Optional[float], top_k: Optional[int]) -> Optional[List[Document]]:
|
||||
docs = []
|
||||
doc_id = []
|
||||
for document in documents:
|
||||
if document.metadata['doc_id'] not in doc_id:
|
||||
doc_id.append(document.metadata['doc_id'])
|
||||
docs.append(document.page_content)
|
||||
|
||||
model = self.client.get_model(self.credentials['model_uid'])
|
||||
response = model.rerank(query=query, documents=docs, top_n=top_k)
|
||||
rerank_documents = []
|
||||
|
||||
for idx, result in enumerate(response['results']):
|
||||
# format document
|
||||
index = result['index']
|
||||
rerank_document = Document(
|
||||
page_content=result['document'],
|
||||
metadata={
|
||||
"doc_id": documents[index].metadata['doc_id'],
|
||||
"doc_hash": documents[index].metadata['doc_hash'],
|
||||
"document_id": documents[index].metadata['document_id'],
|
||||
"dataset_id": documents[index].metadata['dataset_id'],
|
||||
'score': result['relevance_score']
|
||||
}
|
||||
)
|
||||
# score threshold check
|
||||
if score_threshold is not None:
|
||||
if result.relevance_score >= score_threshold:
|
||||
rerank_documents.append(rerank_document)
|
||||
else:
|
||||
rerank_documents.append(rerank_document)
|
||||
return rerank_documents
|
||||
|
||||
def handle_exceptions(self, ex: Exception) -> Exception:
|
||||
return LLMBadRequestError(f"Xinference rerank: {str(ex)}")
|
||||
@@ -2,11 +2,13 @@ import json
|
||||
from typing import Type
|
||||
|
||||
import requests
|
||||
from xinference_client.client.restful.restful_client import Client
|
||||
|
||||
from core.helper import encrypter
|
||||
from core.model_providers.models.embedding.xinference_embedding import XinferenceEmbedding
|
||||
from core.model_providers.models.entity.model_params import KwargRule, ModelKwargsRules, ModelType, ModelMode
|
||||
from core.model_providers.models.llm.xinference_model import XinferenceModel
|
||||
from core.model_providers.models.reranking.xinference_reranking import XinferenceReranking
|
||||
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
|
||||
|
||||
from core.model_providers.models.base import BaseProviderModel
|
||||
@@ -40,6 +42,8 @@ class XinferenceProvider(BaseModelProvider):
|
||||
model_class = XinferenceModel
|
||||
elif model_type == ModelType.EMBEDDINGS:
|
||||
model_class = XinferenceEmbedding
|
||||
elif model_type == ModelType.RERANKING:
|
||||
model_class = XinferenceReranking
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
@@ -113,6 +117,10 @@ class XinferenceProvider(BaseModelProvider):
|
||||
)
|
||||
|
||||
embedding.embed_query("ping")
|
||||
elif model_type == ModelType.RERANKING:
|
||||
rerank_client = Client(credential_kwargs['server_url'])
|
||||
model = rerank_client.get_model(credential_kwargs['model_uid'])
|
||||
model.rerank(query="ping", documents=["ping", "pong"], top_n=2)
|
||||
except Exception as ex:
|
||||
raise CredentialsValidateFailedError(str(ex))
|
||||
|
||||
|
||||
@@ -6,6 +6,7 @@
|
||||
"model_flexibility": "configurable",
|
||||
"supported_model_types": [
|
||||
"text-generation",
|
||||
"embeddings"
|
||||
"embeddings",
|
||||
"reranking"
|
||||
]
|
||||
}
|
||||
Reference in New Issue
Block a user